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Neural stem/precursor cells for the treatment of ischemic stroke
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Abstract

In ischemic stroke, the third most frequent cause of mortality in industrialized countries, therapeutic options have until now been limited
to the first hours after disease onset. Cell transplantation has emerged in various neurological disorders, including experimental stroke, as a
successful recovery-promoting approach also in the post-acute stroke phase. However, before envisaging any translation into humans of such
promising cell-based approaches we still need to clarify: (i) the ideal cell source for transplantation, (ii) the most appropriate route of cell
administration, and, last but not least, (iii) the best approach to achieve an appropriate and functional integration of transplanted cells into the
host tissue. Here we discuss, with special emphasis on neural stem/precursor cells, potential mechanisms that may be involved in the action of
cell-based therapies in stroke.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Ischemic stroke is the leading cause of long-term disability
and the third most frequent cause of mortality in industrial-
ized countries. With an annual incidence of approximately
250–400 in 100,000 inhabitants [1,2], about one million
people in the EU suffer a stroke each year, many of them
being struck by persistent long-term handicaps. Stroke is
caused by the interruption of blood flow in a brain-supplying
artery, in most cases by embolic vascular occlusion [3].
Despite considerable progress in recanalizing (i.e., thrombo-
lytic) [4] and secondary stroke prevention [5] therapies in
recent years there are still no neuroprotective therapies
available that allow to reduce brain damage and to improve
neurological recovery once a stroke has occurred [6].

Following the discovery in the late sixties that neural stem/
precursor cells (NPCs) are continuously generated in the
adult rodent brain [7], it was recently shown that endogenous
NPCs are activated in response to ischemia, both in rodents
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[8] and humans [9]. Stem/precursor cells residing within the
germinal niches of the brain have the ability to migrate
towards the stroke lesion, where they may induce recovery of
the surrounding non-lesioned tissue [8–11]. While this ob-
servation has raised hopes that stem cells may be used for
therapeutic purposes, it is still a matter of debate which
mechanisms underlie the therapeutic efficacy of such cells.

2. NPCs for stroke

Different types of stem/precursor cells were used in ex-
perimental stroke in the past, among which neural, hema-
topoietic, bone marrow, and umbilical cord cells should be
mentioned (see [12,13]; for NPCs see also Table 1). Several
different delivery techniques were tested, including intrapar-
enchymal transplantations, intrathecal injections or intra-
venous infusions (Table 1). As a consequence of the first
encouraging results from experimental studies, pre-clinical
phase I and II trials, using different types of stem cells, were
tested in patients suffering from stroke (Table 2).

Although some of these trials could demonstrate neuro-
logical improvements and cell transplantations appeared to be
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Table 1
Neural precursor cells in animal models of ischemic stroke

Animal Stroke
model

Cell type Time of
transplantation
(after stroke)

Route of
transplantation

Therapeutic action Refs

Cell
replacement

Neuro-
protection

Immuno-
modulation

Plasticity Functional
outcome

Rat MCAO Human NT2N
teratocarcinoma-derived NPCs

1 month Intraparenchymal + Not tested Not tested Not tested Improved [14]

Mouse CCAO+
Hypoxia

Neonatal cerebellar
C17.2-CD NPCs

7 days Intraparenchymal + Not tested + Not tested Not tested [15]

Rat MCAO Immortalized murine
neuroepithelial MHP36 cells

2–3 weeks Intraparenchymal + Not tested Not tested Not tested Improved [16]

Rat MCAO Human fetal NPCs 7 days Intraparenchymal + Not tested Not tested Not tested Not tested [17]
Rat MCAO Human fetal HB1.F3 NPCs 24 h Intravenous + + Not tested Not tested Improved [18]
Gerbil CCAO Human fetal NPCs 96 h Intraparenchymal + Not tested Not tested Not tested Improved [19]
Rat MCAO Rat NPCs 48 h Intracisternal Not tested Not tested Not tested + Not tested [20]
Rat MCAO Human fetal NPCs 48 h Intraarterial Not tested Not tested Not tested + Improved [21]
Rat MCAO Immortalized human

CTX0E03 NPCs
3–4 weeks Intraparenchymal + Not tested Not tested Not tested Improved [22]

Rat MCAO Murine ES cell-derived NPCs 7 days Intraparenchymal + Not tested Not tested Not tested Not tested [23]
Mouse MCAO ES cell-derived NPCs 24 h Intraparenchymal + Not tested Not tested Not tested Not tested [24]
Mouse CCAO+

hypoxia
Neonatal cerebellar
C17.2-CD NPCs

24 h, 72 h, 1,
2 and 5 weeks

Intraparenchymal + + Not tested Not tested Not tested [25]

Monkey MCAO Human NPCs 7 days Intraparenchymal + Not tested Not tested Not tested Not tested [26]

Abbreviations: MCAO, middle cerebral artery occlusion; CCAO, common carotid artery occlusion. +, favourable influence found.
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a safe procedure, the precise mechanisms underlying the
restorative effects of stem cells were still poorly known at the
time of these early studies. Furthermore, the lack of reliable
surrogate marker to test the mechanism of action in patients
with stroke and the non-existence of long-term observations
regarding the influence of stem cells in the patients' brains,
together with observations of tumor formation in mice with
experimental stroke treated with local parenchymal implan-
tations of embryonic stem (ES) cells [32], raised safety
concerns, which slowed down further progress.

However, the scientific community has to intensify efforts
in order to evaluate the efficacy of these strategies since in
these days thousands of desperate patients are estimated to
be on the waiting list to receive stem cell-based therapies
in centers not rigorously following approved clinical trial
protocols [33]. In the following, we shortly summarize (a)
advantages and disadvantages of ES cells compared with
adult NPCs, (b) concepts on the pathotropism of NPCs, as
Table 2
Cell-based therapies tested in pre-clinical trials

Clinical
trial

No. of
patients

Disease Cell type Time o
transpla
(after s

Phase I 12 Basal ganglia
infarcts

Human NT2/D1
teratocarcinoma-derived NPCs

Mean:
(range:

Phase II 18 Ischemic/hemorrhagic
infarcts

Human NT2/D1
teratocarcinoma-derived NPCs

Mean:
(range:

Phase I/II 30 MCA infarcts Autologous mesenchymal
precursor cells

4–9 we

Phase I 5 Basal ganglia infarcts Fetal porcine cells Mean 5

Abbreviations: MCA, middle cerebral artery. (+), histological evidence in one sin
well as (c) prevailing ideas about precursor cell actions in the
stroke brain.

3. Stem cell sources: ES-derived vs. adult NPCs

The ideal cell for transplantation should meet first of all
the criteria of safety for the receiver as well as offer the
highest therapeutic potential. Unlike hematopoietic bone
marrow reconstitution, where a single cell may be sufficient
to replenish the whole body's stores, therapeutic prepara-
tions for stroke requires an adequate cell number, which
raises the need to expand in vitro the putative precursor cell
source.

Despite several groups reporting that ES cells have prom-
ising therapeutic potential [13,23,24], ethical and safety con-
cerns (such as feeder-independent expansion and in vivo
teratocarcinoma formation) still limit their translation to clin-
ics. On the other hand, adult NPCs, which can be obtained
f
ntation
troke)

Route of
transplantation

Therapeutic action Refs.

Cell
replacement

Functional outcome

27 months
7–55)

Intraparenchymal (+) Some improvement [27,28]

3.5 years
1–5)

Intraparenchymal Not tested Some improvement [29]

eks Intravenous Not tested Improved [30]

years Intraparenchymal Not tested No improvement [31]

gle patient.
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from different tissues and safely expanded in vitro, have
shown promising therapeutical effects in several neurological
disorders without causing serious side effects.

4. Pathotropism of NPCs

Whatever route of transplantation is chosen (local intra-
parenchymal or systemic), NPCs, both embryonic and adult,
have the capacity to migrate long distances along chemoat-
tractive gradients induced in sites of brain injury [24,34].

It has been, in fact, shown that transplanted stem/precursor
cells are able to follow, via the blood stream or cerebrospinal
fluid circulation, gradients of pro-inflammatory cytokines
and chemokines that are released at the site of brain lesions.
While promoting interaction between transplanted NPCs and
activated endothelial/ependymal cells around inflamed CNS
tissues, this chemoattractive gradient leads to selective and
specific homing of transplanted cells in inflamed CNS areas
[35–37].

Although the specific homing of transplanted cells has
been demonstrated in spinal cord injury, brain tumors, ep-
ilepsy as well as in stroke, the exact molecular mechanisms
that sustain this phenomenon have been detailed in particular
in experimental autoimmune enchepahlomyelits (EAE), the
animal model of multiple sclerosis. Tethering, rolling and
firm adhesion to inflamed endothelial cells and extravasation
into inflamed CNS areas are sequentially mediated by the
constitutive expression of functional cell adhesion molecules,
integrins and chemokine receptors on the surface of NPCs
[38,39].

5. Differentiation of stem cells: ES cell-derived precursors
as sources for cell replacement

In experimental stroke, it has been shown that stem/pre-
cursor cells exhibit the capacity to differentiate into mature
neurons and glial cells once migrated into lesioned brain areas
[8,23]. Differentiated neurons may reveal histochemical char-
acteristics of host cells, producing neurotransmitters such as
serotonin, GABA, acetyl choline or substance P, and forming
dendritic branches that growout into the cell environment [23].
Electrophysiological studies of these neurons may show char-
acteristics of resting potentials, membrane currents and action
potentials very similar to mature neurons [23].

However, only a small percentage of transplanted cells
undergo terminal differentiation in the host tissue [12] and the
number of differentiated transplanted cells remains very
small compared with the large number of cells that are lost
following a stroke, even when optimistic stereological es-
timations are used. Thus, doubts have been raised whether the
improvement of function may indeed be a consequence of a
significant cell replacement phenomenon. Since not only
neurons, but also the tissue matrix, is injured by a stroke,
hopes that three-dimensional tissue architectures may easily
be reconstructed by transplantation of loose cells have largely
been abandoned in the meantime [12].
6. Supportive effects: direct and indirect neuroprotective
actions of NPCs

Experimental evidence does not strongly support the pos-
sibility that recovery from brain damage via cell replacement
is easily achievable in stroke via transplantation of both ES
and adult NPCs [8,23]. However, these cells may promote the
survival and remodeling of the injured brain via the so-called
bystander effect, which defines the capacity of NPCs to exert
direct neuroprotection through neutralization of free radicals,
inflammatory cytokines, excitotoxins, lipases peroxidases
and other toxic metabolites that are released following an
ischemic event [40]. In addition to these effects, it has also
been shown that adult NPCs may exert an immunomodula-
tory action, while in an undifferentiated state, causing a
profound downregulation of inflammatory Tcells and macro-
phages within inflamed brain areas [15,38,39,41–43].

7. Supportive effects: plasticity-promoting actions ofNPCs

Once ischemic injury has developed, the affected tissue
activates recovery processes aiming at the restoration of
function. Factors released in a paracrine and/or endocrine
way by injured as well as spared nervous tissue (neurons, glia,
inflammatory cells) induce axonal sprouting of surviving
neurons, facilitating the formation of new synaptic contacts
that take over lost functions [44,45]. The timing and co-
ordination of such events is crucial for the success of the
regenerative process [44].

Synaptic plasticity can be enhanced by physical activity,
as well as by experimental manipulations aiming at the
antagonization of growth-repulsive influences [45]. NPCs
might have important roles in augmenting recovery processes
and scavenging inhibitory molecules that might limit the
reorganization of the injured brain [46]. That cell-based ther-
apies may indeed enhance the reorganization of white matter
tracts surrounding an ischemic infarct has recently been shown
by magnetic resonance imaging using fractional anisotropy
(FA) and diffusion tensor imaging (DTI) sequences [21].

8. Genetically-modified NPCs as tool for drug delivery

Studies in experimental models of ischemic stroke have
shown that a major limitation for the efficacy of neuropro-
tective therapies is the inability of drugs to reach their target
tissue [6,47]. In view of their pathotropism and their long-
term persistence in target tissues, NPCs represent a promising
vehicle for targeted drug delivery. The innate capacity of stem
cells to release protective molecules can further be increased
by genetically transfecting cells to secrete additional neu-
roprotective peptides [48] or molecules that modify the
transplanted stem cell fate [49]. In Parkinson's disease, NPC
transplants secreting glial-derived neurotrophic factor
(GDNF) and vascular-endothelial growth factor (VEGF)
have shown beneficial results in experimental studies and are
presently assessed in pre-clinical trials [50].
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9. Recommendations for clinical trials

Recent evidence consistently challenges the sole and lim-
ited view that neural stem/precursor cells may protect the
CNS from inflammatory damage leading to neurodegenera-
tion exclusively throughout cell replacement. As a matter of
fact, NPC transplantation may also promote CNS repair via
intrinsic neuroprotective bystander capacities, mainly exerted
by undifferentiated stem cells releasing, at the site of tissue
damage, a milieu of survival promoting molecules whose in
situ release is temporally and spatially orchestrated by envi-
ronmental needs. Thus, the concept of ‘therapeutic plasticity’
is emerging since stem/precursor cells might adapt their fate
and function(s) to specific environmental needs occurring as
a result of different pathological conditions. The challenging
ability of transplanted NPCs to protect the brain from several
types of injuries using different and/or articulated bystander
strategies is of pivotal importance for the future of stem cell-
based therapeutic approaches in humans.

In preparation for such trials, molecular actions of NPCs
should be evaluated more thoroughly in the stroke brain.
Specifically, additional insight from animal experiments is
urgently needed regarding the long-term effects of NPCs in
the host organism, which should preferably be obtained also
in primates, in order to test the safety of the cells used. In
subsequent patient trials, control conditions should stringent-
ly be included in phase II studies, possibly in form of cross-
over designs, in which a verum and placebo are delivered at
two different time points. This is necessary, as control con-
ditions provide the only possibility to provide the proof-of-
concept of the efficacy of NPCs. With concerted efforts on an
EU basis, it should be possible soon to obtain reliable data
about the efficacy of NPCs in ischemic stroke.
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