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How Stem Cells Speak with Host Immune
Cells in Inflammatory Brain Diseases

Stefano Pluchino and Chiara Cossetti

Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS)
may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as
CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem
cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular
signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses,
and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells.
Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial
modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS.
Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being
extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases.
Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically
relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality
of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to
the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.
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Introduction

Cell replacement therapies with adult stem cells have

received much attention in recent years as a potential

means of driving recovery after CNS damage (Martino and

Pluchino, 2006), such as that accumulating during the course

of neurological diseases characterized by inflammation, which

include multiple sclerosis (MS), brain stroke, spinal cord inju-

ries (SCI), Alzheimer’s disease (AD), Parkinson’s disease (PD),

and amyotrophic lateral sclerosis (ALS) (Glass et al., 2010).

Bone marrow-derived mesenchymal stem cells (MSCs)

and subventricular zone (SVZ)-derived neural stem/precursor

cells (NPCs) exert remarkable trophic effects on endogenous

neural cells and beneficial modulatory actions on inflamma-

tory responses. The systemic injection of these stem cells into

rodents and non-human primates with immune-mediated ex-

perimental CNS demyelination, stroke and injuries of the spi-

nal cord has led to neuroprotection and recovery of function

(Martino et al., 2011; Uccelli et al., 2011b). However, the

concomitant observation that a surprisingly low number of

transplanted stem cells survive, differentiate and integrate in
vivo (Lees et al., 2012) has inspired the important new con-

cept that stem cell grafts are capable of a multitude of

bystander tissue healing effects where the initially expected

differentiation potential loses the lead (Rossi and Cattaneo

2002). Thus, the emerging concept of stem cell therapeutic

plasticity, or functional multipotency, recapitulates the multi-

ple ways in which stem cell grafts can mediate systemic ho-

meostasis. This concept also encompasses the interactions of

stem cell grafts with CNS-resident versus CNS-infiltrating

immune cells at the level of the inflammatory tissue area, in
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which they are either transplanted or to which they migrate

after transplantation (Martino and Pluchino 2006; Teng

et al., 2011).

While a comprehensive understanding of the mecha-

nisms by which stem cell grafts work is still lacking, it may

be likely that they exert some of their therapeutic effects by

secreting a complex array of homeostatic molecules with

immune regulatory and tissue trophic functions that ulti-

mately reduce tissue damage and/or enhance endogenous

repair (Li and Xie, 2005). Most of these properties are shared

between different stem cell types and define key developmen-

tal conserved regulatory pathways (Ivanova et al., 2002), and

anticipate the presence of a common stem cell extracellular

(secreted) signature capable of modulating some key intrinsic

reactions of cells and tissues that are ultimately responsible

for the repair of injured tissues, including the CNS (Martino

and Pluchino, 2006; Uccelli et al., 2008).

The idea that stem cell transplants work typically via

structural cell replacement (Rossi and Cattaneo, 2002) is now

being significantly challenged by the evidence of consistent

cellular signaling between the stem cell graft and the host

(Martino et al., 2011). Stem cell graft-to-host communication

is delivered with secreted cytokines and/or growth factors, or

through communicating cellular (Gap) junctional transfer of

electrical, metabolic and immunological information (Ratajc-

zak et al., 2012). Some very early work also suggests that

extracellular membrane vesicles (EVs) might play a key role,

and are transferred from donor grafted stem cells to target en-

dogenous cells (Cossetti et al., 2012b).

The newest picture is therefore that stem cell therapies,

contrary to single-molecule-based pharmaceutical interven-

tions, hold the potential to deliver a complex series of infor-

mation to a multitude of targets in the diseased microenvir-

onment (Cossetti et al., 2012a). A number of studies are now

focusing on the cellular signaling that exists between grafted

stem cells and endogenous target cells, with the aim of clari-

fying its physiological or circumstantial nature, and elucidat-

ing its molecular signature and therapeutic potential.

Here, we will specifically focus on MSC- and NPC-based

transplantation approaches in the context of brain diseases. We

will examine the main cellular signaling pathways that grafted

stem cells use to establish a therapeutically relevant cross talk

with the host immune system, and discuss the potential role of

local inflammation in regulating some of the bidirectionality of

this cellular communication. Concurrently, we will examine

how engrafted stem cells influence the initiation and mainte-

nance of both innate and adaptive immune responses, while

providing insights into how the understanding of the mecha-

nisms regulating this reciprocal relationship might contribute

to the development of innovative, high clinical impact thera-

peutic strategies for regenerative neurosciences.

Environmental Sensors and Stem Cell Graft-to-Host
Immune System Interactions
The in vivo interactions between the stem cell graft and the

host immune system are mediated by functional environmen-

tal sensors, which play significant roles in both the immuno-

genicity and the functional plasticity of the graft.

The Immunogenicity of the Stem Cell Graft

The immunogenicity is the ability of allogeneic stem cells to

provoke an immune response when facing the host immune

system after transplantation (e.g. at the level of the CNS tis-

sue after focal transplantation, or into the blood stream im-

mediately after systemic injection) (Schu et al., 2012). The

mechanism of rejection by the host immune system implies

that donor major histocompatibility complex (MHC)-express-

ing cells stimulate recipient CD8þ or CD4þ T cells, either

directly in the presence of appropriate co-stimulatory mole-

cules (such as CD80/B7.1 or CD86/B7.2), or indirectly

through cross presentation of MHC alloantigens by professio-

nal APCs (Brevig et al., 2000; Kamoun, 2006).

Whether or not allogeneic (or xenogeneic) stem cell

grafts are intrinsically immunogenic is still a matter of debate.

Part of the immunogenicity of stem cells is determined by

evaluating the expression of MHC-I and �II and co-stimula-

tory molecules, or by assessing their behavior in mixed lym-

phocyte reactions (MLR) in vitro, and in allogeneic transplan-

tation settings in vivo (De Miguel et al., 2012). While this

property of stem cells has virtually no impact on the outcome

of MSC autografts in phase I/II clinical trials (Connick et al.,

2012; Lee et al., 2012; Mazzini et al., 2012), or within exper-

imental syngeneic settings (Morando et al., 2012), it becomes

more relevant when (single donor) grafted allogeneic human

NPCs are evaluated in phase I clinical trials for rare leukody-

strophies (Gupta et al., 2012; Steiner et al., 2010), ALS

(Glass et al., 2012; Riley et al., 2012) or stroke, with or

without concomitant immune suppression (Aboody et al.,

2011).

Recent evidence supports the possibility that undifferen-

tiated adult stem cells are endowed with an immunologically

privileged status and are capable of escaping the normal proc-

esses of allogeneic rejection (Bifari et al., 2010). However,

there is some controversy regarding the expression of MHC

and co-stimulatory molecules by MSCs and NPCs, as well as

their upregulation upon exposure to cytokines mimicking an

inflammatory environment, or when comparing different pro-

tocols for isolation and culture (Table 1). Induced pluripotent

stem (iPS) cells are now being proposed as a potential source

of autologous stem cells for therapy, and early evidence al-

ready exists that differentiated cells generated from autologous
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iPS cells can be applied for cell replacement therapy without

eliciting immune rejection (Guha et al., 2013).

With regenerative medicine clinical trials on the hori-

zon, and limited knowledge of potential stem cell graft-ver-

sus-host interactions to consider, it is imperative that the im-

munogenicity of stem cells is understood (Pearl et al., 2012).

In Vitro Stem Cell Immunogenicity
In vitro, both MSCs and NPCs are MHC-I low/medium and

MHC-II negative (Klyushnenkova et al., 2005; Le Blanc

et al., 2003; Pluchino et al., 2005, 2009a,b), but upregulation

of MHC-I and -II expression is observed after long-term neu-

rosphere expansion (Laguna Goya et al., 2011; Odeberg

et al., 2005) or NPC exposure to proinflammatory cytokines

such as interferon (IFN)-c or tumor necrosis factor (TNF)-a
(Johansson et al., 2008). Under basal growth conditions the

co-stimulatory molecules CD80/B7.1, CD86/B7.2 and CD40

are also absent in both MSCs and NPCs (Odeberg et al.,

2005; Tse et al., 2003). MSCs and NPCs fail to elicit a pro-

liferative response when co-cultured with allogeneic mis-

matched peripheral blood mononuclear cells (PBMCs) (La-

guna Goya et al., 2011; Odeberg et al., 2005; Tse et al.,

2003). A single study investigating the immunogenicity of

human NPCs in vitro, by one-way MLR with peripheral

blood lymphocytes from human leukocyte antigen (HLA)-

mismatched donors, shows than NPCs hold a low—but not

negligible—immunogenic potential that is sufficient to acti-

vate peripheral lymphocytes. In this context, the transcription

and release of transforming growth factor (TGF)-b1 by

NPCs balance their immunogenicity (Ubiali et al., 2007).

Alloreactive cytotoxic T lymphocytes and NK cells fail to lyse

untreated NPCs, but readily kill IFN-c-treated NPCs that

have upregulated MHC-I and -II (Mammolenti et al., 2004).

This implies that adult stem cells have the potential to induce

T-cell anergy or T-cell unresponsiveness due to a lack of co-

stimulation (Imitola et al., 2004a). Such an immune-privi-

leged status of stem cells may be epiphenomenal to a critical

balance of suppressing and activating effects in which the low

immunogenicity of the stem cell prevails only when stem cell-

mediated downregulation of immune cell activation overrides

its own allostimulatory potential (Fang et al., 2006). From

this perspective, the suppression exerted only by a large num-

ber of MSCs on MLRs in vitro more likely reflects cell dose

rather than histocompatibility effects that would result from

an overload of stimulatory mechanisms (Le Blanc et al.,

2003) (Table 1).

In Vivo Graft Stem Cell Immunogenicity
In vivo, stem cells may not retain infinite immune privilege

and the inflammatory context to which they are exposed

upon transplantation may influence their immune phenotype

(De Miguel et al., 2012; Laguna Goya et al., 2011). Alloge-

neic rodent MSCs are recognized by the host immune system

in vivo, elicit a cellular and humoural immune response, and

fail to induce tolerance in graft-versus-host disease (GVHD)

(Badillo et al., 2008; Ringden and Le Blanc, 2011). When

studied within a non-myeloablative allogeneic bone marrow

(BM) transplantation setting in naive immune competent

mice, infused allogeneic MSCs prime host T cells and induce

a memory T-cell response, resulting in rejection of the BM

graft (Eliopoulos et al., 2005; Nauta et al., 2006). This par-

tial lack of immune competence has been attributed to defects

in the expression of different components of antigen process-

ing machinery by MSCs (e.g. chaperone ERp57, MB1, and

zeta components of 20S proteasome and immunoproteasomal

components LMP7 and LMP10), irrespective of IFN-c stimu-

lation. This lack has also been attributed to the presence of

the immunosuppressive, non-polymorphic HLA class Ib mol-

ecule HLA-G (Morandi et al., 2008).

The low immunogenicity of grafted NPCs is suggested

by the lack of acute immune response directed toward intra-

cerebrally transplanted mouse NPCs in rats with middle cere-

bral artery occlusion (MCAo) (Modo et al., 2002). Similarly,

low immunogenicity is observed when allo/xenogeneic NPCs

are either directly injected into the blood stream (Lee et al.,

2008), or co-transplanted under the kidney capsule with pan-

creatic islets in a fully mismatched allograft model (Melzi

et al., 2010). This property appears restricted to NPCs, rather

than to CNS cells in a broader sense, given that the neonatal

or fetal CNS tissue is vulnerable to rejection (Brundin et al.,

2010; Modo et al., 2002). The source of stem cells and deliv-

ery into an inflammatory environment can influence the

degree of immunogenicity, while stem cell differentiation to-

ward a mature (and immunogenic) phenotype can increase

the likelihood of graft rejection (Imitola et al., 2004a). In

agreement with this, IFN-c-treated NPCs transplanted into

the CNS of immune competent animals are actively rejected,

even though the concomitant ischemic microenvironment

should favor stem cell survival (Kim et al., 2006). Further-

more, the transplantation of MHC-mismatched (C57BL/6)

NPCs into (BALB/c) mice with mouse hepatitis virus

(JHMV)-induced CNS demyelination results in an increase

in transcripts encoding the T-cell chemoattractants monokine

induced by gamma interferon (MIG)/CXCL9 and interferon

gamma-induced protein (IP)10/CXCL10, which correlate

with increased T cell infiltration and NPC rejection (Weinger

et al., 2012).

The Functional Plasticity of the Graft

The functional plasticity of the graft describes the dynamic

sequence of actions that transplanted stem cells initiate upon
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TABLE 1: Immunophenotype of MSCs and NPCs

MSCa NPC

Ligand(s) Rodent Human Rodent Human

Chemokine receptors

CCR1 (CD191) Macrophage inflammatory protein (MIP)-1�/CCL3,
Regulated on Activation Normal T Expressed and
Secreted protein (RANTES)/CCL5, Monocyte
chemoattractant protein (MCP)-3/CCL7, and Myeloid
progenitor inhibitory factor (MPIF)-1/CCL23

6 þ

CCR2 (CD192) Monocyte chemoattractant protein (MCP)-1/CCL2 þ þb þ
CCR3 (CD193) Eotaxin/CCL11, Eotaxin-3/CCL26, CCL7, MCP-4/

CCL13, and CCL5
6b

CCR4 (CD194) CCL2, MIP-1�/CCL4, CCL5, Thymus and Activation
Regulated Chemokine (TARC)/CCL17, Macrophage-
derived chemokine (MDC)/CCL22

6 b

CCR5 (CD195) CCL5, CCL3, CCL4, CCL31 þ þ 6

CCR5 (CD196) MIP3 �/CCL6 þ
CCR7 (CD197) EBI1 Ligand Chemokine (ELC)/CCL19 and secondary

lymphoid-tissue chemokine (SLC)/CCL21
þ

CCR8 (CDw198) CCL1 þ
CCR9 (CDw199) Thymus-Expressed Chemokine (TECK)/CCL25 þ þ
CXCR1 (CD181) Neutrophil chemotactic factor (IL-8) þ
CXCR2 (CD182) IL-8, Neutrophil-activating protein 3 (NAP-3)/CXCL1,

MIP-2�/CXCL2, MIP-2�/CXCL3
þ

CXCR3 (CD183) Platelet Factor 4 (PF4)/CXCL4, Monokine induced by
gamma interferon (MIG)/CXCL9), Interferon gamma-
induced protein 10 (IP-10)/CXCL10, Interferon-
inducible T-cell alpha chemoattractant (I-TAC)/CXCL11

þ þ

CXCR4 (CD184) Stromal cell-derived factor (SDF)-1 �/CXCL12 þ 6 þ þ
CXCR5 (CD185) B lymphocyte chemoattractant (BLC)/CXCL13 þ
CXCR6 (CD186) CXCL16 þ þ
CX3CR1 (GPR 13) Fractalkine/CXC3CL1 þ þ

Integrins

�1 (CD49a) Collagen and Laminin þ �
�2 (CD49b) Multiple on cellular membrane (role in cell adhesion) þlow þ
�4 (CD49d) Galectins, Paxillin, multiple on ECM 6 þ
�5 (CD49e) Fibronectin, role in cell-surface mediated signaling þ 6

�6 (CD49f ) Tetraspannins, role in cell-surface mediated signaling low þ
�v (CD51) Vitronectin receptor and multiple on ECM þlow

�1 (CD29) Netrin-1 and Reelin, multiple on ECM þ
�2 (CD18) Multiple, role in cell adhesion and cell-surface mediated

signaling
� þ
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TABLE 1 (Continued)

MSCa NPC

Ligand(s) Rodent Human Rodent Human

�3 (CD61) Multiple, role in cell adhesion and cell-surface mediated
signaling

þ

�4 (CD104) Laminins, multiple on ECM þ

Clusters designation (CDs)

CD11b Inactivated complement component 3b (iC3b) �
CD13 Not known 6 þ
CD14 Co-receptor for bacterial lipopolysaccharide (LPS) �
CD19 CD81, CD82, Complement receptor 2, VAV2 �
CD24 Multiple, role in cell adhesion � low

CD34 Multiple on ECM, role in cell adhesion 6 � �
CD40 CD40L (CD154) � �
CD44 Hyaluronic acid (HA), Osteopontin, Collagens, Matrix

metalloproteinases (MMPs)
þ þ þ þ

CD45 Multiple, role in cell growth, differentiation, mitotic
cycle, and oncogenic transformation

6 � � �

CD54 Multiple integrins, including CD11a/CD18 or CD11b/
CD18

þ

CD56 Multiple, role in cell–cell adhesion, neurite outgrowth,
synaptic plasticity, and learning and memory

� � þ þ

CD71 Transferrin þ
CD73 Not known þ þ
CD79 Not known �
CD80 CD28 and Cytotoxic T-Lymphocyte Antigen 4 (CTLA)-

4/CD152
� 6

CD86 CD28 and CD152 � 6

CD90 Not known þ þ
CD105 Transforming growth factor (TGF)- �1 and �3, Activin

A, bone morphogenetic protein 2 and 7
þ þ

CD106 � and � integrins, role in cell adhesion þ
CD107 Stem Cell Factor (SCF) 6 �
CD133 Not known � þ þ
CD166 CD6 þ
CD271 Nerve growth factor (NGF), brain-derived neurotrophic

factor (BDNF), neurotrophin (NT)-3 and �4
6 þ þ

Toll-like receptors (TLRs)

TLR 1 (CD281) Triacyl lipopeptides þ þ
TLR 2 (CD282) Peptidoglycan, lipoteichoic acid, porins, lipopeptides,

lipoglycans, zymosan
þ þ þb þb
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exposure to the host inflammatory microenvironment thanks

to the array of functional environmental sensors expressed on

their surface (Freedman et al., 2010; Martino and Pluchino

2006; Muller et al., 2006). This includes not only integration

and differentiation (Rossi and Cattaneo, 2002), but particu-

larly for systemic stem cell therapies homing and the extrava-

sation into the CNS, and modulation of immune responses

in situ.

Homing and Extravasation
Early studies on models of CNS inflammation showed that

the transmigration of naive and effector T cells into the CNS

is differentially regulated with increased recruitment of the

latter (Kivisakk et al., 2009; Sixt et al., 2001). Activated effec-

tor T cells have a high expression of integrins on the plasma

membrane. These are able to support rapid tethering, rolling,

and firm arrest under flow conditions in the absence of fur-

ther chemokine-induced upregulation of ligand affinity

(Ransohoff and Engelhardt, 2012). T cells cross the border

by either paracellular diapedesis—literally, squeezing amongst

endothelial cells—or transcellular diapedesis, that is, by creat-

ing pores through the cells. While the former requires the dis-

assembly of the intercellular junction structure, the latter

involves the formation of cell–cell interactions through the

arrangement of docking structures, or transmigratory cups,

enriched in intercellular adhesion molecule (ICAM)-1 and

vascular cell adhesion molecule (VCAM)-1, which partially

embrace migrating leukocytes (Peer et al., 2007). The precise

contribution of integrins and G protein-coupled receptors

(GPCRs) to the enhanced extravasation of effector T cells in

response to inflammation has remained unclear. While T cell

antigen-specificity is mandatory for crossing the blood–brain

barrier (BBB) and reaching perivascular spaces, it becomes

dispensable when further crossing the glia limitans and invad-

ing the CNS parenchyma (Archambault et al., 2005). A

recent expansion of the view of T cell recruitment demon-

strates that activated effector T cells rely on intracellular che-

mokines that are stored in the recycling vesicles of the

inflamed endothelium and released at the cell surface to acti-

vate integrins through G protein-coupled receptors (GPCRs)

for arrest and diapedesis (Shulman et al., 2012) (Fig. 1A).

Following the observation that intravenously injected

NPCs target an intracranial tumor in rodents (Aboody et al.,

2000), the value and the mechanisms behind this alternative

TABLE 1 (Continued)

MSCa NPC

Ligand(s) Rodent Human Rodent Human

TLR 3 (CD283) Double-stranded RNA þ þ þ þ
TLR 4 (CD284) Lipopolysaccharide, glycans, envelope proteins,

glycoinositolphospholipids
þ þ þb þb

TLR 5 (CD285) Flagellin þ þ
TLR 6 (CD286) Lipoteichoic acid, lipopeptides, zymosan þ þ
TLR 7 (CD287) Single-stranded RNA 6 6

TLR 8 (CD288) Single-stranded RNA 6 6

TLR 9 (CD289) CpG DNA, hemozoin 6 6

TLR 10 (CD2909) Not known 6 6

Other

Lin Not known þ
MHC-I (HLA- ABC) Not known þlowb þ
MHC-II (HLA-DR) Not known � � �b �b

Sca-1 Not known þ þ þ
Stro-1 Not known þ þ �

aEvidence from bone marrow-derived MSCs only are quoted.
bUpregulated under inflammatory conditions. Data in Table 1 are in part summarized in (Chamberlain et al., 2008; Hall et al., 2006;
Martino and Pluchino 2006; Pluchino et al., 2009b; Rojewski et al., 2008; Uccelli et al., 2008; Yuan et al., 2011).
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stem cell injection route were extensively investigated, using

different types of stem cells and experimental CNS disease

models. The first studies in mice with experimental autoim-

mune encephalomyelitis (EAE), a model of multiple sclerosis

(MS), showed that brain inflammation and endothelial cell

activation at the level of the BBB is indispensable in promot-

ing CNS homing and extravasation of systemically injected

(e.g. intravenously or intracerebroventricularly) NPCs (Ben-

Hur et al., 2003; Chu et al., 2003; Pluchino et al., 2003).

NPCs injected systemically into healthy animals were in fact

never found in the CNS, while exclusively accumulating (and

persisting only for a short period) in peripheral organs (Plu-

chino et al., 2003). Specific homing of transplanted NPCs

has been shown, so far, in experimental brain stroke (Chu

et al., 2003; Lindvall and Kokaia, 2011), SCI (Takeuchi

et al., 2007), epilepsy (Chu et al., 2004; Hattiangady et al.,

2008), HD (Lee et al., 2006), and glioblastoma (Aboody

et al., 2000; Ahmed et al., 2011).

Tethering, rolling and firm adhesion of injected stem

cells to activated endothelial cells and subsequent diapedesis

into inflamed CNS areas are sequentially mediated by the

constitutive expression of functional a and b integrins (Cam-

pos et al., 2004, 2006; Leone et al., 2005; Pluchino et al.,

2003, 2005), cell adhesion molecules such as CD44 (Plu-

chino et al., 2003, 2005) (Fig. 2), and chemokine receptors

(e.g. CCR1, CCR2, CCR5, CXCR3, CXCR4) on the NPC

surface (Imitola et al., 2004b; Ji et al., 2004; Pluchino et al.,

2005) (Fig. 1B).

Human MSCs require coordinated P-selectin, VCAM-1

and a4b1 integrin, matrix metalloproteinase (MMP)-2 and

cytokine involvement for rolling, firm adhesion, and transen-

dothelial migration under shear stress conditions in vitro
(Chamberlain et al., 2011; Ruster et al., 2006). Mouse NPCs

migrate across endothelial cells using clusters of a4 integrin

dimers (that bind to VCAM-1) (Pluchino et al., 2005) and

CXCR4, a receptor for stromal cell-derived factor (SDF)-1a/

CXCL12, both in vitro and in vivo (Corti et al., 2005; Peng

et al., 2004). Significantly, the fluorescence-activated cell sort-

ing (FACS)-based selection of either CXCR4- or CD49d-

expressing mouse NPCs leads to more efficient CNS homing

following intracerebroventricular cell injection into healthy

mice (Corti et al., 2005), and intracarotid NPC transplanta-

tion into mice with brain stroke (Guzman et al., 2008),

respectively.

The activation of the CXCR4/SDF-1a signaling path-

way on NPCs and MSCs increases their migratory capacity,

survival, and remyelinating capacity, both in vitro on slice cul-

tures (Corti et al., 2005; Imitola et al., 2004b), as well as in
vivo upon focal transplantation into rodents with experimen-

tal cerebral ischemia (Robin et al., 2006; Wang et al., 2008),

and JHMV-induced demyelination (Carbajal et al., 2010,

2011). In human NPCs, integrins a2, a6, and b

FIGURE 1: Rules for the migration of effector T cells and systemically injected stem cells to the CNS. (A) Activated effector T lympho-
cytes have a high expression of membrane-bound integrins that are able to support chemokine-independent arrest under flow. The
transmigration of effector T cells requires chemokines that are stored in intracellular vesicles, ready to be released in close contact with
crawling cells. (B) Tethering, rolling, and firm arrest of injected stem cells to activated endothelial cells and diapedesis into inflamed
CNS areas are sequentially mediated by the constitutive expression of functional a and b integrins, cell adhesion molecules such as
CD44, TLRs and chemokine receptors on the MSC/NPC surface. *The main chemokine signaling pathways responsible for stem cell
migration are shown in Table 2.
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preferentially mediate the homing toward the vasculature,

whereas the CXCR4/SDF-1a signaling pathway regulates

homing through the brain parenchyma (Carbajal et al., 2010;

Mueller et al., 2006; van der Meulen et al., 2009).

MSCs lack the expression of CD44, a cell-surface glyco-

protein that binds to hyaluronic acid (HA) and is expressed

in activated T cells (DeGrendele et al., 1997); yet, they ac-

quire CD44 expression after extensive in vitro expansion

(Qian et al., 2012). CD44-expressing NPCs (Fig. 2) induce

the formation of transmigratory apical cups, enriched in

ICAM-1 and VCAM-1, at the surface of CD44þ brain endo-

thelial cells in vitro (Rampon et al., 2008), thus hijacking the

endothelial signaling system previously shown to be involved

in leukocyte extravasation (Butcher and Picker, 1996; Ley

et al., 2007).

MSCs and NPCs constitutively express chemokine

receptors and release chemokines, which are upregulated after

cell exposure to TNF- a or IFN-c (Croitoru-Lamoury et al.,

2007; Turbic et al., 2011) and directly required for prolifera-

tion and differentiation of both stem cell types (Li et al.,

2011; Rice and Scolding, 2010).

A number of chemokine/cytokine signaling pathways

have been elucidated in the therapeutic application of stem

cells, several of which influence the migratory properties of

transplanted cells:

• The activation of monocyte chemoattractant protein

(MCP)-1/CCL2 signaling plays a central role in the trans-

endothelial recruitment of intra-arterially delivered (CCR2-

expressing) mouse NPCs in vivo (Andres et al., 2011),

although it is not functional on human MSCs (Ringe

et al., 2007);

• Human NPCs express CXCR1 and CXCR5, which medi-

ate in vitro migration across a monolayer of human brain

ECs in response to IL-8/CXCL8 and B lymphocyte chemo-

attractant (BLC)/CXCL13, respectively (Weiss et al.,

2010);

• Fractalkine/CX3CL1 downstream signaling is functional in

the trafficking of transplanted (CX3CR1-expressing) rat

and human MSCs in rats with hypoglossal nerve injury

and MCAo, respectively (Ji et al., 2004; Zhu et al., 2009);

• Hepatocyte growth factor (HGF), a multifunctional cyto-

kine originally characterized as a mitogen for hepatocytes,

and its cognate receptor HGFR/c-met, are constitutively

expressed in MSCs, where HGF signaling stimulates the

chemotactic migration and recruitment of MSCs in vitro
(Neuss et al., 2004; Son et al., 2006) (Table 2).

Therefore, NPCs—much more so than MSCs—display

CNS pathotropism upon transplantation (Martino and Plu-

chino, 2006; Muller et al., 2006), owing to the expression of

a large variety of environmental sensors that work as ’’Velcro-

like’’ biomimicries in response to a variety of mediators of

inflammation involved in tissue damage and repair (Belma-

dani et al., 2006; Martino et al., 2011; Tran and Miller,

2003). The discovery of the specific homing ability of adult

stem cells across the BBB has opened new frontiers for the

treatment of CNS diseases, in particular those characterized

by widely disseminated damage. This characteristic, allowing

stem cell interactions with endogenous endothelial and epen-

dymal cells in the context of inflammatory conditions, repre-

sents an essential requirement in the therapeutic paradigm of

systemic (cellular) delivery for tissue-specific diseases.

Modulation of Immune Responses
The systemic injection of MSCs and NPCs is remarkably

immune regulatory in vivo (Martino and Pluchino, 2006;

Spaggiari and Moretta, 2012; Uccelli et al., 2008).

FIGURE 2: NPCs express environmental sensors. (A) Z-stack confocal image (from a total of n5 40 Z-stacks of optical slices in 0.5 lm inter-
vals) of a mouse neurosphere in vitro. Red is for vimentin, green is for CD44, white is for phosphor-histone H3 (pHH3) and blue is for cell
nuclei (Dapi). (B) VolocityVR -based 3D reconstruction of the CD44 expression in A. The magnified frame in A shows a pHH31/CD441 NPC.
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Syngeneic and xenogeneic MSCs ameliorate the clinical

course of both myelin oligodendrocyte glycoprotein (MOG)

and proteolipid protein (PLP)-induced chronic and relapsing

EAE, respectively. MSC-transplanted EAE mice show reduced

demyelination and T and B cell infiltration of the CNS, and

decreased production of myelin-specific antibodies (Gerdoni

et al., 2007; Zappia et al., 2005; Zhang et al., 2005). Impor-

tantly, MSCs produce these effects only when injected at dis-

ease onset or peak, while the injection of MSCs during the

chronic phase has no effect (Zappia et al., 2005). The obser-

vation that T cells from MSC-transplanted EAE mice do not

proliferate in vitro following a second antigen challenge, sug-

gests that a state of peripheral tolerance is produced by MSCs

(Zappia et al., 2005). Injected MSCs also prevent the differ-

entiation and maturation of monocytes into dendritic cells

(DCs) in vivo (Ramasamy et al., 2007). Furthermore, MSCs

block almost instantaneously the migration of CCR7- and

a4b1-expressing DCs into draining lymph nodes to hinder

local antigen presentation to CD4þ T cells and cross-presen-

tation to CD8þ T cells (Chiesa et al., 2011). Recently, when

transplanted into the lesion epicenter of rats with contusion

SCI, MSCs migrated within the injured spinal cord without

differentiating into glial or neuronal elements. Additionally,

significant skewing of the acute inflammatory cell infiltrate at

the injured site with increased numbers of Arginase-1þ or

CD206þ alternatively activated (M2-like) anti-inflammatory

macrophages, and decreased numbers of iNOSþ or CD16/

32þ classically activated (M1-like) proinflammatory macro-

phages were observed (Nakajima et al., 2012). Data from

stroke research suggest that MSCs might also release neuro-

trophic factors, such as brain derived neurotrophic factor

(BDNF), provide trophic support for vulnerable neurons

(particularly in the ischemic penumbra), support endogenous

oligodendrogenesis and regulate anti-inflammatory responses

with a reduction of neural edema in situ, thus leading to

enhanced tissue sparing (Chen et al., 2001, 2002, 2003).

TABLE 2: Functional Environmental Sensors on MSCs and NPCs

Receptor Ligand Stem Cellsa Described Functionb References

MHC-I/II MSCs/NPCs Not known Multiple refs.

CD80/CD86/CD40 MSCs/NPCs Not known Multiple refs.

CD49d (VLA-4) VCAM-1 NPCs Homing/adhesion (Guzman et al., 2008;
Pluchino et al., 2005)

P-selectin P-selectin glycoprotein
ligand (PSGL)-1

MSCs Homing/adhesion and
migration

(Ruster et al., 2006)

CXCR4 SDF-1�/CXCL12 MSCs/NPCs Migration (Carbajal et al., 2010;
Corti et al., 2005;
Imitola et al., 2004b;
Mueller et al., 2006;
Wang et al., 2008)

CD44 HA Role in interaction with
endothelial cells
and extravasation

(Qian et al., 2012;
Rampon et al., 2008;
Zhu et al., 2006)

CCR2 MCP-1/CCL2 NPCs Transendothelial recruitment (Andres et al., 2011)

CXCR1 and
CXCR5

IL-8/CXCL8 and
CXCL13

NPCs Role in interaction with
endothelial cells
and extravasation

(Weiss et al., 2010)

CX3CR1 Fractalkine/CX3CL1 MSCs Trafficking (Ji et al., 2004;
Zhu et al., 2009)

HGF HGFR/cMet MSCs Migration and recruitment (Neuss et al., 2004)

TLR TLR agonists MSCs Migration and recruitment,
immune modulation;
secretion of cytokines
and chemokines

(Liotta et al., 2008;
Romieu-Mourez et al.,
2009; Tomchuck et al.,
2008)

aEvidence from bone marrow-derived MSCs only are quoted.
bFunction described in stem cell immune interactions.
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NPCs attenuate brain inflammation and the amount of

microglial activation, when injected into the biological fluids

(blood stream, cerebrospinal fluid and lymph) of rodents or

non-human primates with either chronic and relapsing EAE

or stroke (Bacigaluppi et al., 2009; Capone et al., 2007;

Daadi et al., 2010; Lee et al., 2008), thus reducing the

amount of demyelination and axonal/neuronal pathology,

promoting host-driven brain repair (Einstein et al., 2009),

and in turn decreasing the clinical severity of the disease

(Martino et al., 2011). Once within the CNS, systemically

injected NPCs accumulate and persist around perivascular

spaces where reactive astrocytes, inflamed endothelial cells

and blood-borne infiltrating T cells co-reside. In these areas,

named ‘‘CNS atypical ectopic niches,’’ the great majority of

transplanted NPCs survive long term, displaying undifferenti-

ated features, and promote neuroprotection through the in
situ release of immune modulatory molecules and neurotro-

phic factors (Pluchino et al., 2005). These effects correlate

well with a reduction in perivascular inflammatory infiltrates

and CD3þ T cells (Pluchino et al., 2005), an increase in

CD25þ and CD25þ/CD62Lþ Treg cells, and a significant

reduction in the brain expression of the inflammation marker

ICAM-1 and its ligand LFA-1 (Einstein et al., 2003). More-

over, NPCs injected systemically into EAE mice induce apo-

ptosis of blood-borne CNS-infiltrating encephalitogenic Th1

cells in situ (Pluchino et al., 2005). When injected intraparen-

chymally at the proximal and distal ends of the contused

mouse spinal cord, NPCs survive transplantation and estab-

lish cellular contacts with endogenous professional phago-

cytes, while also reducing the proportion of classically acti-

vated (M1-like) macrophages and promoting the healing of

the injured cord (Cusimano et al., 2012).

Interestingly, only small numbers (between 1 and 5%)

of systemically injected MSCs and NPCs traffic over the

inflamed CNS, whereas a rather significant accumulation of

transplanted stem cells is observed at the level of the spleen

and the draining lymph nodes (Bacigaluppi et al., 2008,

2009; Capone et al., 2007; Chiesa et al., 2011; Gerdoni

et al., 2007; Lee et al., 2008; Pluchino et al., 2009a,b; Sun

et al., 2010). Here, stem cells extensively interact with the

host immune system to inhibit the activation and prolifera-

tion of T cells (Gerdoni et al., 2007), the maturation of DCs

(Pluchino et al., 2009b), or the emigration of spleen neutro-

phils toward the damaged brain (Lee et al., 2008). Overall,

these pioneering studies demonstrated the therapeutic efficacy

of MSCs and NPCs in animal models of inflammatory dam-

age, but left (partly) open the question of whether or not

stem cell integration in the nervous system is indispensable

for the therapeutic outcomes observed.

In vitro, the full range of MSC and NPC immune regu-

latory properties is constitutive, as well as enhanced after

licensing or priming with proinflammatory cytokines or Toll-

like receptor (TLR) ligands that recapitulate some aspects of

inflammatory cellular signaling (Bifari et al., 2010; Kokaia

et al., 2012; Ren et al., 2008). TLRs are being proposed as

first-line environmental danger sensors for stem cells (Delar-

osa et al., 2012; Martino and Pluchino 2007).

Human MSCs express TLR 1–6 and TLR 9 only

(Raicevic et al., 2010), while mouse MSCs also express TLR

7 and 8, and exposure to TLR ligands controls MSC func-

tions including: TLR 2-dependent regulation of IL-6 secre-

tion; nuclear factor kappa B (NF-kB) translocation; reduced

MSC basal motility; and increased MSC proliferation (Pevs-

ner-Fischer et al., 2007). Activation of human MSCs by TLR

ligands induces IL-6, IL-8 and CXCL10 secretion and NF-kB

nuclear translocation in vitro (Liotta et al., 2008). TLR 3 and

4 ligation via lipopolysaccharide (LPS) reduces the suppressive

activity of MSCs on proliferating T cells (Tomchuck et al.,

2008), while increasing their reprogramming capacity on

macrophages by a prostaglandin (PG) E2-dependent mecha-

nism (Nemeth et al., 2009). The timing and the relative

levels of the TLR ligation determine the final functional out-

come of MSCs. This is suggested by the description of two

major subsets of TLR-stimulated human MSCs, which either

mature towards a pro-inflammatory phenotype after treatment

if exposed to the TLR 4 agonist LPS (MSC1), or acquire an

immune suppressive function after treatment with the TLR 3

agonist Poly(I:C) (MSC2) (Bunnell et al., 2010; Pevsner-Fi-

scher et al., 2007; Waterman et al., 2010).

The veto-like (forbidding) activity of MSCs (Potian

et al., 2003; Tscherning and Claesson, 1993) inhibits T-cell

proliferation (Bartholomew et al., 2002; Bocelli-Tyndall et al.,

2007; Di Nicola et al., 2002; Klyushnenkova et al., 2005) via

induction of T-cell quiescence upon blockade into G0/G1

(Glennie et al., 2005) and downregulation of the T-cell acti-

vation markers CD25, CD38, and CD69 (Groh et al., 2005;

Le Blanc et al., 2004) and of IL-2 production (Park et al.,

2011). MSCs also inhibit Th17 differentiation from both na-

ı̈ve and memory T cell precursors in vitro, as well as prevent-

ing the efflux of naturally occurring Th17 cells derived from

inflammation sites in vivo (Duffy et al., 2011). Human

MSCs shift CD8þ cytotoxic cells towards a suppressive phe-

notype (Hof-Nahor et al., 2012). Some of the immune mod-

ulatory activities of MSCs have been ascribed to their ability

to induce the generation of CD4þ/CD25þ/FoxP3þ T cells

with regulatory functions (Treg) (Maccario et al., 2005; Pre-

vosto et al., 2007; Tasso et al., 2012). MSCs also functionally

interact with B cells, which are again arrested in G0/G1 (Tab-

era et al., 2008), thus failing to progress toward differentia-

tion and production of immunoglobulins in vitro (Corcione

et al., 2006). Conversely, MSCs strongly enhance the prolifer-

ation and differentiation into plasma cells of memory B cells
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in vitro and in vivo (Traggiai et al., 2008). Finally, rodent and

human MSCs exert profound effects on immature DCs, by

constraining their maturation to professional APCs (Chiesa

et al., 2011; English et al., 2008; Gur-Wahnon et al., 2007;

Jiang et al., 2005; Li et al., 2008; Liu et al., 2012; Zhang

et al., 2004).

NPCs also express TLRs 2, 3, and 4 and respond to

TLR agonists, which regulate stem cell proliferation and dif-

ferentiation, both in vitro and in vivo. While TLR 2 ligation

stimulates neurogenesis (Rolls et al., 2007), TLR 3 and 4

downstream signaling has inhibitory effects on both stem cell

proliferation and self-renewal (Rolls et al., 2007; Yaddanapudi

et al., 2011), partly by inhibiting Sonic Hedgehog (Shh) sig-

naling. Remarkably, the exposure to TLR 2 and 4 ligands

induces the secretion of TNF-a by NPCs (Covacu et al.,

2009) (Tables 1 and 2).

Mouse NPCs inhibit the activation and proliferation of

both antigen-specific and antigen non-specific Th1 and Th17

cells in vitro, as well as inducing T cell apoptosis (Einstein

et al., 2003; Fainstein et al., 2008; Knight et al., 2010; Plu-

chino et al., 2005). Human NPCs suppress the proliferation

and alter the cytokine secretion profiles of xenogeneic (e.g.

marmoset), antigen-specific and allogeneic mitogen-activated

T cells (Kim et al., 2009b; Pluchino et al., 2009a). Com-

pared with rodent NPCs, human NPCs have a lower cytotox-

icity towards T cells, but a higher cytotoxicity toward mono-

cyte/macrophages (Ricci-Vitiani et al., 2007) in vitro. Human

NPCs also hinder the differentiation of myeloid precursor

cells (MPCs) into immature DCs, and the maturation of

immature DC to functional APCs (Pluchino et al., 2009a).

Therefore, while most of the mechanisms underlying

the immunosuppressive effects of MSCs and NPCs are yet to

be clarified, it is very likely that at least some of them involve

consistent cellular signaling between the stem cell graft and

the target host immune cell.

Stem Cell Signaling and Regulation of the Host
Immune Responses

Multicellular organisms have developed a range of very efficient

and controlled cell-to-cell communication mechanisms that are

deeply integrated, thus generating global and concerted

response behaviors of neighboring and distant cells in the envi-

ronment. This variety of mechanisms, known as cell signaling,

is the foundation for coordinated cellular actions and flexible

responses. Stem cell signaling takes place through different

pathways that involve networks of interacting molecules trans-

mitting information between the graft and the host. This

exchange of signals entails either cell-to-cell contacts (juxta-

crine) or gradients formed by soluble factors (paracrine) (Friedl

et al., 2005) which also circulate in blood and body fluids and

act in a regional or systemic manner (endocrine). Stem cell sig-

naling may also involve the newly recognized release of extracel-

lular membrane vesicles (EVs) (Kalra et al., 2012; Mathivanan

et al., 2010; Thery et al., 2002). A schematic representation of

the alternative cell signaling pathways regulating the interac-

tions between the stem cell graft and the host immune system

in inflammatory brain diseases is shown in Figure 3.

Cell-to-Cell Contacts or Juxtacrine Signaling
Juxtacrine signaling (Anklesaria et al., 1990) refers to:

1. The direct membrane-to-membrane contact that is gener-

ally mediated by receptor–ligand binding between adjacent

cells. A clear example of receptor–ligand interaction has

been described for MSCs that acquire APC-like properties

upon the expression of functional VCAM-1, which binds

with high affinity to activated integrin a4 expressed by T

lymphocytes in vitro (Majumdar et al., 2003).

2. The binding of a cell receptor to components of the

extracellular matrix (ECM) released by a neighboring cell.

An example of this is the adhesive and promigratory role

of membrane CD44 bound to ECM hyaluronic acid (HA)

in the transendothelial migration of grafted NPCs (Ram-

pon et al., 2008) across brain endothelial cells.

3. The involvement of cellular junctional coupling where

membrane regions of two neighboring cells (within a range

of 2–4 nm) become closely apposed.

The interaction between transplanted stem cells and

immune cells is well documented and it has also been shown

that NPCs are able to establish immune synapse-like contacts

with CD3þ T cells leading to CD3 redistribution at the level

of the contact zone (Imitola et al., 2004a). Cell-to-cell con-

tacts may also imply the formation of a network of nanotubes

between neighboring cells, as described for cardiomyoblasts

and MSCs in vitro (Cselenyak et al., 2010).

MSCs co-express a functional Fas/CD95 ligand (FasL)

and non-functional Fas/CD90 that makes them in principle

of low sensitivity to programmed cell death (Mazar et al.,

2009). In experimental colitis and systemic sclerosis (SS),

intravenously injected MSCs activate Fas-regulated MCP-1

secretion, which recruits T cells for FasL-mediated apoptosis,

and ameliorate disease phenotypes in colitis and SS, while

FASL�/� MSCs fail to do so (Akiyama et al., 2012). Simi-

larly, in NPCs, membrane bound FasL is partly responsible

for the NPC-regulated pro-apoptotic effect on encephalito-

genic Th1 and Th17 (but not Th2) lymphocytes in EAE in

vivo and in vitro (Knight et al., 2010; Pluchino et al., 2005).

Interestingly, mouse NPCs are resistant to FasL-induced cell

death and activation of Fas increases NPC survival through

upregulation of the inhibitor of apoptosis protein (IAP),

Birc3 (Knight et al., 2010).
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IFN-c primes some of the immunosuppressive proper-

ties of MSCs via upregulation of programmed cell death pro-

tein-ligand (PD-L) 1, which attenuates the activation and

effector functions of PD-1-expressing Th1 and Th17 cells,

via modulation of the expression of different cytokine recep-

tors, such as IL-12R, and the signal transductors STAT5a and

STAT5b (Luz-Crawford et al., 2012; Sheng et al., 2008).

Junctional coupling via connexins was first described

between grafted NPCs and host Purkinje neurons in B05/þ

spinocerebellar ataxia type 1 (SCA1) mice in vivo, and has been

associated with neuronal rescue and behavior via the transcellu-

lar transfer of small molecules and Ca2þ waves (Jaderstad et al.,

2010). More recently, connexin43þ cellular contacts have been

described between endogenous macrophages and grafted NPCs

in mice with experimental contusion SCI (Fig. 4). These NPC-

transplanted SCI mice show a reduction of proinflammatory

M1-like macrophages at the injured site and develop much less

severe secondary cord damage, compared with sham-operated

controls (Cusimano et al., 2012) (Table 3).

Paracrine Signaling
Paracrine (‘‘para’’ ¼ near) signaling refers to a local signaling

system in which a factor secreted by a donor cell diffuses over

small distances through the extracellular fluids and affects

other nearby target cells. This results in the formation of a

gradient of the signaling molecule with proximal target cells

responding differently according to the concentration they are

exposed to. In regenerative medicine grafted stem cells secrete

a variety of paracrine factors, including interleukins, colony-

stimulating factors, prostaglandins, and growth factors, which

regulate interactions with the environment (Ratajczak et al.,

2012).

Paracrine signaling mediated by factors released by the

stem cells can play an essential role in the reparative process

observed after stem cell transplantation, with MSCs and

NPCs secreting growth factors, chemokines and cytokines,

constitutively as well as in response to proinflammatory stim-

uli (Gnecchi et al., 2008; Ratajczak et al., 2012).

MSCs express indoleamine 2,3-dioxygenase (IDO)—an

immune regulatory enzyme that catalyses the degradation of

tryptophan via the kynurenine pathway—and exhibit func-

tional IDO activity and IDO-dependent apoptotic effects on

allogeneic human T cells upon stimulation with IFN-c (Mei-

sel et al., 2004; Plumas et al., 2005). In vivo in mice with

EAE, transplanted syngeneic MSCs prevent relapses and pro-

mote myelin repair via an IFN-c-dependent mechanism that

FIGURE 3: Schematic representation of the alternative cell signaling pathways regulating the interactions between the stem cell graft
and the host immune system in inflammatory brain diseases. (A) Juxtacrine signaling pathways (cell-to-cell contact) that include (i) recep-
tor–ligand interaction such as PD-L1/PD-1; (ii) receptor binding to components of the extracellular matrix (ECM) released by neighboring
cells (such as CD44 to HA); and iii) gap junction formation (via connexins); (B) Paracrine signaling with release of soluble factors that
likely form a gradient (e.g. TGF-b, LIF, NO, PGE2); (C) Endocrine signaling (signaling at a distance) that implies the release of hormone-
like factors such as TSG-6; and (D) EV release with the possibility to deliver a multitude of bioactive molecules such as mRNAs, micro-
RNAs and proteins. Abbreviations: CD; cluster of differentiation; HA: hyaluronic acid; ECM: extracellular matrix; Cx43: Connexin-43;
Ca11: calcium; TGF-b: transforming growth factor beta; PGE2: Prostaglandin E2; NO: nitric oxide; LIF: Leukaemia inhibitory factor; TSG-
6: TNF-a-stimulated gene/protein 6; PD-1: programmed death-1; PD-L1: programmed cell death 1 ligand 1; EVs: extracellular vesicles.
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induces IDO in CD11cþ DCs and leads to the inhibition of

antigen reactivity and disease spread (Matysiak et al.,

2008, 2011).

MSCs also modulate local allogeneic responses after

transplantation through the secretion of nitric oxide (NO)

and PGE2, which switch the host immune response from a

TABLE 3: Stem Cell Signaling and Modulation of Immune Functions

Cell Signaling Pathway Stem Cella Target Cell Described Functionb References

Juxtacrine FAS/FASL MSCs/NPCs T cell T cell apoptosis (Akiyama et al., 2012;
Knight et al., 2010;
Pluchino et al., 2005)

Juxtacrine PD-1/PD-L1
PDL-2

MSCs T cells Inhibition of T cell
activation and effector
function(s)

(Luz-Crawford et al.,
2012; Sheng et al., 2008)

Juxtacrine ICAM/VCAM MSCs T cells Inhibition of T cell
activation and effector
function(s)

(Ren et al., 2010)

Juxtacrine Cx43 MSCs/NPCs Neurons,
macrophages

Transfer of Caþþ,
inhibition of M1-like
functions

(Cusimano et al., 2012;
Jaderstad et al., 2010)

aracrine IDO-kynurenine MSCs (h) T cells, DCs T cell apoptosis, inhibition
of antigen presentation

(Lanz et al., 2010; Matysiak
et al., 2008, 2011; Meisel
et al., 2004; Plumas et al.,
2005)

Paracrine COX2-PGE2 MSCs/NPCs T cells Inhibition T cell
proliferation, inhibition
Th17 cell functions

(Aggarwal and Pittenger,
2005; Bouffi et al., 2010;
Duffy et al., 2011;
Martinet et al., 2009;
Wang et al., 2009)

Paracrine iNOS-NO MSCs (r) T cells Inhibition T cell
proliferation

(Ren et al., 2008)

Paracrine HO MSCs/NPCs T cells Inhibition T cell
proliferation, generation of
Tr1 and Th3 Tregs

(Bonnamain et al., 2012;
Chabannes et al., 2007;
Moll et al., 2011)

Paracrine VEGF NPCs Microglia/
macrophages

Inhibition of microglial
activation, proliferation
and phagocytosis

(Horie et al., 2011; Kim
et al., 2009a; Mosher
et al., 2012)

Paracrine LIF NPCs Th17 cells Inhibition of Th17 cell
differentiation

(Cao et al., 2011; Horie
et al., 2011; Kim et al.,
2009a; Mosher et al.,
2012)

Paracrine Galectins MSCs/NPCs T cells Inhibition of T cell
proliferation

(Gieseke et al., 2010;
Sioud 2011; Yamane et al.,
2010, 2011)

Endocrine/
Paracrine

TSG-6 MSCs Macrophages Inhibition of macrophage
activation, proliferation
and phagocytosis

(Fisher-Shoval et al., 2012;
Lee et al., 2009; Roddy
et al., 2011)

EVs miR transfer MSCs/NPCs Multiple Post-transcriptional
regulation

(Bruno et al., 2009; Chen
et al., 2010; Xin et al.,
2012)

aEvidence from bone marrow-derived MSCs only are quoted.
bFunction described in stem cell immune interactions.
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Th1/Th17 towards an anti-inflammatory Th2-like secretory

profile (Aggarwal and Pittenger, 2005; Bouffi et al., 2010).

Recently, in vitro co-cultures have identified NO and PGE2

as being novel strong inhibitors of the NPC-induced impair-

ment of T-cell proliferation, alternative to the interference

with cell activation or induction of apoptosis (Wang

et al., 2009).

Heme oxygenase-1 (HO-1) is another key contributor

to MSC-mediated suppression of alloactivated T cells.

Beyond the direct suppressive function of HO-1 (Chabannes

et al., 2007), a recent study has identified a novel HO-1-

driven mechanism of rat and human MSCs leading to the

generation of IL-10þ Tr1 and TGF-bþ Th3 Tregs in allo-

and T-cell receptor-activated lymphocytes. Again, observations

from in vitro co-cultures with T cells have implicated HO-1

in the anti-proliferative effects of rat NPCs (Bonnamain

et al., 2012).

Stem cells secrete neurotrophins and growth factors,

some of which have been recently described to play a major

role in stem cell–immune cell interactions (Ranganath et al.,

2012; Thirant et al., 2012).

Conditioned medium from human MSCs (MSC-CM)

reduces functional deficits in mouse MOG-induced chronic

EAE and promotes the development of oligodendrocytes and

neurons. MSC-CM contains HGF, and exogenously supplied

HGF promotes recovery in EAE, whereas cMet and antibod-

ies to HGF block the functional recovery mediated by HGF

and MSC-CM (Bai et al., 2012).

Vascular endothelial growth factor (VEGF) is necessary

for NPCs to modulate microglial activation, proliferation and

phagocytosis (Mosher et al., 2012), while leukemia inhibitory

factor (LIF) inhibits Th17 cell differentiation in vitro, and

leads to amelioration of EAE in vivo (Horie et al., 2011) after

NPC transplantation.

Finally, Galectins (Gal) are a family of carbohydrate-

binding proteins with an affinity for b-galactosides, and Gal-

1 and -3 exhibit profound and unique modulatory activities

on immune effector functions by controlling cell activation,

cytokine synthesis and viability through cross-linking of the

cognate receptors on the surface of lymphatic cells (de la

Fuente et al., 2012). The interaction of MSC-membrane-

bound or secreted Gal-1 and Gal-3 with their receptors on T

cells induces tolerogenic signals, resulting in T-cell suppres-

sion (Sioud, 2011). In line with this evidence, the transplan-

tation of Gal-1-overexpressing human NPCs exhibits remark-

able therapeutic efficacy in experimental SCI and brain stroke

(Yamane et al., 2010, 2011) (Table 3).

Signaling at a Distance (Endocrine)
Endocrine signaling differs from paracrine signaling in that

the signaling molecules (such as hormones) are released into

the bloodstream and travel over much longer distances. Speci-

alized cells localized in endocrine organs usually secrete the

signaling molecules. Recent studies provide evidence of cellu-

lar signaling between grafted stem cells and host immune cells

that do not necessarily fall under the current definition of en-

docrine signaling. These studies excitingly show that the sys-

temic stem cell graft has the potential to exert some remote

actions in vivo, regardless of the numbers of transplanted

stem cells effectively reaching (and/or surviving at) the

injury site.

Systemically injected human NPCs ameliorate the clin-

ico-pathological signs of experimental intracerebral hemor-

rhage (ICH) in the mouse; yet, the majority of injected

FIGURE 4: NPC grafts establish juxtacrine signaling with endog-
enous professional phagocytes through junctional coupling. (A)
Confocal microscopy image of GFP (green) NPCs contacting F4/
801 macrophages via connexin431 cellular junctions (red; arrow-
heads). (B) VolocityVR -based 3D reconstruction of the confocal Z-
stack in A. The magnified inset shows a structural junctional con-
nexin43 pattern (red; arrowheads) between the process of one
NPC (green) and one juxtaposed F4/801 macrophage (blue). (C)
Immunoelectron micrograph of GFP1 NPCs. The frame indicates
one NPC whose processes are found to be in very close contact
with a (GFP2) monocyte/macrophage. (D) High magnification of
the frame in C showing the immunogold-labeled process of an
NPC (arrowheads) running between a monocyte/macrophage
and a second immunogold-labeled NPC. Cellular junctions
between both NPC cytoplasms (inset, arrows) and between the
NPC and the monocyte/macrophage can be observed in the
inset. Pseudo colors in B and C: NPCs are in green; monocytes/
macrophages are in orange; endothelial cells are in yellow and
endogenous astrocytes are in blue. (Reproduced with permission
from Cusimano et al., Brain, 2012, 135, 447-460, VC Oxford Uni-
versity Press.)
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NPCs do not enter the brain, but rather accumulate and per-

sist within the marginal zone area of the spleen, where they

inhibit macrophage activation and induce significant attenua-

tion of both cerebral and splenic activation of TNF-a, IL-6

secretion, and NF-kB. Splenectomy before ICH induction

eliminates the beneficial effect of the stem cell graft and sug-

gests that stem cell-driven protection from brain damage may

then be attained, even without CNS entry of the transplanted

cells (Lee et al., 2008).

Peripheral immune modulation has also been observed

following systemic MSC and NPC transplantation in EAE,

owing to a remarkable accumulation of transplanted cells at

the level of secondary lymphoid organs, where T-cell prolifer-

ation and production of pro-inflammatory cytokines were

inhibited (Einstein et al., 2007; Pluchino et al., 2009b; Zap-

pia et al., 2005). Furthermore, exclusive targeting of the pe-

ripheral immune system has been reported in relapsing EAE

in mice after subcutaneous NPC injection (Pluchino et al.,

2009b). NPC-injected EAE mice showed significant clinical

improvement, despite the absence of injected cells in the

CNS. Instead, undifferentiated NPCs were consistently found

at the level of the perivascular areas in draining lymph nodes,

where they hindered the activation of myeloid DCs to APCs

by a bone morphogenetic protein (BMP)-4-dependent mech-

anism that reduced the pathogenicity of antigen-specific T

cells (Pluchino et al., 2009b).

Prockop et al. have demonstrated that MSCs injected

systemically in mice with myocardial infarction reduce the

infarct size, and improve cardiac function through the release

of the anti-inflammatory factor tumor necrosis factor (TNF)-

a-induced protein (TNAIP6/TSG-6) in response to the

entrapment of the transplanted MSCs as small emboli in the

lungs (Lee et al., 2009). Two recent reports have confirmed

this TSG-6-dependent, but engraftment-independent, action

at a distance of grafted MSCs, in mice with both EAE

(Fisher-Shoval et al., 2012) and ethanol-induced corneal

inflammation (Roddy et al., 2011) (Table 3).

Signaling Through Extracellular Membrane Vesicles
The evidence that secreted membrane vesicles (EVs) provide

extracellular waves of information that are capable of induc-

ing multiple functional responses in adjacent and distant tar-

get cells has only emerged over the last decade (Thery, 2011).

EVs are actively secreted by most cell types and have been

identified in body fluids such as urine, amniotic and cerebro-

spinal fluid, malignant ascites, bronchoalveolar lavage, syno-

vial fluid, breast milk, saliva and blood, and they work as

key players in the regulation of immune responses (Thery

et al., 2009).

EVs, including shed vesicles and exosomes, have been

demonstrated to be secreted by a number of different cell

types, including stem cells, either constitutively or upon acti-

vation (Thery et al., 2009). These organelles can be consid-

ered as a miniature version of the parental cell with the very

same complexity of signaling, and a tendency to participate

in a wide spectrum of biochemical and cellular activities

(Heijnen et al., 1999). EVs released by stem cells may inter-

act through specific receptor ligands (e.g. CD44 and/or

CD29) with target cells to transfer proteins, biological reac-

tive lipids and receptors (Bruno et al., 2009), or mRNAs and

microRNAs (miRNA) that may account for epigenetic

changes in target cells (Ratajczak et al., 2006; Valadi et al.,

2007). Moreover, EVs are considered to be paracrine or endo-

crine signaling vehicles, given that they can contain and trans-

port signaling molecules, such as cytokines, to target cells at

distant sites (Camussi et al., 2010; Ratajczak et al., 2012).

MSC-derived EVs shuttle lipids, mRNAs (Tomasoni

et al., 2013), both double-strand precursor (pre-miR) and sin-

gle-strand mature microRNAs (miR) (Chen et al., 2009; Col-

lino et al., 2010; Xin et al., 2012) and are tolerogenic

(Mokarizadeh et al., 2012) and neuritogenic (Xin et al.,

2012) on target cells. Systemically injected EVs from human

bone marrow-derived MSCs have been shown to accelerate

kidney repair in a mouse model of acute kidney injury (AKI)

by inhibiting apoptosis and stimulating tubular epithelial cell

proliferation. EVs also significantly reduced the impairment

of renal function. Pretreatment of EVs with RNase to inacti-

vate their RNA cargo abrogated these protective effects.

Moreover, EVs capable of reducing the acute injury also pro-

tected from later chronic kidney disease (Gatti et al., 2011).

A recent study in an MCAo rat stroke model reported the

possibility that MSCs might communicate with brain paren-

chymal cells via exosome-mediated miR-133b transfer, leading

to specific gene expression regulation that in turn enhanced

neurite outgrowth and contributed to functional recovery

(Xin et al., 2012).

All these studies suggest the existence of a bidirectional

exchange of genetic information between stem and target

cells, or reciprocally from injured cells to bone marrow-

derived or resident stem cells, that in turn leads to tissue

repair (Camussi et al., 2010). In this context, embryonic and

adult stem cell-derived EVs shuttle defined patterns of

mRNAs and miRs that are internalized by a receptor-medi-

ated mechanism in target cells, and may induce de-differen-

tiation of cells surviving injury with cell cycle re-entry and tis-

sue self-repair. Conversely, it might be envisaged that

transcripts delivered by EVs from injured cells might repro-

gram the phenotype of stem cells to acquire specific features

of the inflamed/damaged microenvironment.

Exosomes from human ES cell-derived MSCs have

recently been shown to reduce infarct size in a mouse model

of myocardial ischemia/reperfusion injury and in this setting
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exosomes have been identified as the cardioprotective compo-

nent in the MSC paracrine secretion (Lai et al., 2010). These

very same MSC-derived exosomes contained the miRs hsa-

let-7b and hsa-let-7g, predominantly in the precursor form

(Chen et al., 2010).

The first tentative evidence of immune modulation by

NPC-derived exosomes emerged from experiments in which

the culture supernatant of human NPCs (HB1.F3) suppressed

the activation and proliferation of human T cells by apoptosis

and cell cycle arrest. Exosomes isolated from NPCs and

added to the supernatant of cultured T cells resulted in simi-

lar suppression by G0/G1 cell cycle arrest. This reinforces the

possibility that (at least part of ) the immune modulatory

effects of NPCs might be mediated by secreted EVs/exosomes

(Kim et al., 2009c). The hypothesis of EV secretion by NPCs

introduces a completely different dimension to the therapeu-

tic applications of NPCs in regenerative medicine. By replac-

ing transplantation of NPCs with administration of their

secreted products (including EVs), many of the limitations

and safety concerns associated with the transplantation of via-

ble replicating cells, such as tumors arising from transplanted

NPCs, could be mitigated (Amariglio et al., 2009).

EVs represent a vectorized novel signaling system oper-

ating from inside a donor cell towards the periphery, the

cytosol, or possibly the nucleus of a target cell that is

regarded as in-between paracrine (Ratajczak et al., 2012) and

endocrine cellular signaling (Camussi et al., 2010). These sig-

naling vesicles may therefore play a central, though previously

hidden, regulatory action in a wide range of cellular processes,

under both physiological and pathological circumstances.

Some recent evidence suggests that different cell types,

including MSCs, traffic complex suites of proteins (Kim et al.,

2012) and non-coding regulatory RNAs (Collino et al., 2010;

Kalra et al., 2012; Koh et al., 2010)—which appear to be

regulated by extracellular signals that mimic changes in the

environment, including Wnts, cytokines, hypoxia and growth

factor deprivation (Cossetti et al., 2012b). Current efforts are

focusing on establishing the specificity versus reactivity of the

vesicle content, as recent studies have suggested that certain

patterns of extracellular miRs might not mirror the cellular

miRome, but rather, being epiphenomenal to cellular machin-

ery, regulating the mobility of small nucleic acids outside the

cell via recycling vesicles (Kalra et al., 2012).

Based on this preliminary evidence, it would be more

than reasonable to predict the existence of sophisticated cel-

lular machinery controlling the trafficking of extracellular

(signaling) RNAs via exosomes. These mechanisms are likely

to occur at two main levels, acting either exclusively or

cooperatively: (a) transcriptional, at the genetic loci of

secreted non-coding RNAs; and/or (b) post-transcriptional,

through ribonucleoproteins (Collino et al., 2010) that con-

vey the correct non-coding RNAs from cells towards EVs

and/or exosomes.

Thus, EVs represent a promising opportunity to develop

novel cell-free therapy approaches that might overcome the

obstacles and risks associated with the use of native or engi-

neered stem cells. To put this in perspective, naturally occur-

ring EV nano-factories may benefit from the expression of

specific membrane molecules that would confer upon them a

potential mechanism for homing to a specific tissue or micro-

environment (El Andaloussi et al., 2013) (Table 3).

Conclusions and Perspectives

Consistent evidence challenges the old view that somatic,

non-hematopoietic stem cell medicines, including those using

MSCs and NPCs, protect the injured CNS exclusively

throughout cell replacement (Rossi and Cattaneo, 2002). It is

now accepted that the transplantation of stem cell transplan-

tation via biological routes remarkably promotes the repair/

healing of the CNS via several ‘‘bystander’’ or ‘‘chaperon’’

capacities that the graft exhibits within specific in vivo micro-

environments after transplantation (Martino et al., 2011;

Uccelli et al., 2011a). As such, compelling evidence is being

provided that sustained stem cell graft-to-host exchange of

signals leads to remarkable trophic effects on endogenous

brain cells and beneficial modulatory actions on innate and

adaptive immune responses that ultimately promote the heal-

ing of the injured CNS (Martino et al., 2011; Uccelli et al.,

2007). Animal studies have taught much about the therapeu-

tic potential of the physiological, and in some cases just cir-

cumstantial, stem cell graft–host immune cell interactions in

the nervous system. However, convincing evidence of the

value of the allo- or xenogeneic transplantation settings in the

study of stem cell graft-to-host immune interactions is lack-

ing; and some doubts as to the artifactual nature of certain

observations persist.

After having established the significant role of diffusible

secreted neuroprotective and immune regulatory molecules in

this process (Martino et al., 2011; Uccelli et al., 2011a),

recent evidence has highlighted the potential of cellular junc-

tional coupling, as well as the (horizontal) transfer of different

levels of information via EVs, between the stem cell graft and

the host immune cells (Cossetti et al., 2012b; Huang et al.,

2013). The physiological role of stem cell-derived EVs is cur-

rently not well understood. Nevertheless, encouraging results

indicate that EVs have similar protective and reparative prop-

erties to their cellular counterparts in tissue repair and possi-

bly anti-cancer therapy. Thus, EVs could represent a promis-

ing opportunity to develop novel cell-free therapy approaches

that might overcome the obstacles and risks associated with

the use of native or engineered stem cells.
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Human studies have a great responsibility to help:

1. Establish the boundaries between the basal versus inflam-

mation-reactive immunocompetence and immune regula-

tory potential of transplantable stem cell sources;

2. Determine the potential occurrence of undesired collateral

immune suppression and/or deficiency; and

3. Define their overall safety profile in vivo, when sustained

cell signaling with the host (human) immune system takes

place within a pathogen-enriched environment (Aboody

et al., 2011).

Therefore, parallel to the development of clinical trials

looking at the safety of these novel stem cell-based therapeu-

tics, some of which have just started (Bonab et al., 2012;

Glass et al., 2012; Gupta et al., 2012; Mazzini et al., 2003,

2012; Steiner et al., 2010), we foresee that the exploitation of

the mechanisms regulating their modalities of intercellular

communication, including those addressing the mechanism of

EV trafficking and secretion, has a realistic chance to revolu-

tionize most of our current understanding of (stem) cell biol-

ogy and its application in CNS repair.
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