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Purpose of review

Spontaneous remyelination occurs in the central nervous

system of patients with multiple sclerosis. However, this

process is not robust enough to promote a functional and stable

recovery of the myelin architecture. The development of cell-

based therapies, aimed at promoting multifocal remyelination, is

therefore foreseen.

Recent findings

Several experimental cell-based strategies aimed at replacing

damaged myelin-forming cells have been developed in the last

few years. However, most of these therapeutic approaches –

although consistently able to form new myelin sheaths at the

transplantation site – are unfeasible owing to the mutifocality of

the demyelinating process in multiple sclerosis patients and the

inability to grow and produce large numbers of differentiated

myelin-forming cells in vitro. Stem cell-based therapies that

partially overcome these limitations have been proposed recently.

Summary

Stem cell-based remyelinating therapies can be considered a

plausible alternative strategy in immune-mediated demyelinating

disorders. However, before any potential applications in

patients with multiple sclerosis can be envisaged, it is

necessary to confront the following preliminary, and still

unsolved, questions: (1) the ideal stem cell source for

transplantation; (2) the most appropriate route of stem cell

administration; and, last but not least, (3) the best approach for

achieving an appropriate, functional and long-lasting integration

of transplanted stem cells into the host tissue.
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CNS central nervous system
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# 2004 Lippincott Williams & Wilkins
1350-7540

Introduction
Multiple sclerosis (MS) is a chronic, inflammatory,

demyelinating disease of the central nervous system

(CNS), whose aetiology remains unknown. MS pathol-

ogy is characterized by the presence, within the CNS, of

perivascular lympho/mononuclear inflammatory infil-

trates inducing, over the years, patchy demyelination,

axonal loss and reactive astroglial scarring [1,2]. In this

context, spontaneous remyelination – the process by

which endogenous oligodendrocyte progenitor cells

(OPCs) re-ensheath demyelinated axons – occurs and

some axons may recover their capacity to conduct action

potentials [3–6]. However, spontaneous remyelination

fails over time in MS, and the unavoidable progression of

demyelination and axonal damage invariably leads to

permanent neurological deficits [7,8].

Spontaneous remyelination occurs in
patients with multiple sclerosis
The adult CNS is known to be somehow reactive to

tissue injuries (i.e. those that are ischaemic, toxic,

traumatic, etc.) including those causing immune-

mediated demyelination and axonal loss. Studies in

humans as well as in rodents have demonstrated that

both in MS as well as in its experimental animal model –

namely experimental autoimmune encephalomyelitis

(EAE) – spontaneous myelin repair may occur as a

physiological response to the immune-mediated destruc-

tion of the myelin sheath [9,10.]. It is still debated as to

which type of cell drives axon re-ensheathment in vivo.
In remyelinated areas, terminally differentiated oligo-

dendrocytes as well as stellate-shaped (either NG2-

positive or O4-positive) OPCs have been found

[9,10 .,11–13]. However, OPCs – expressing the receptor

for platelet-derived growth factor-a or the proteoglycan

NG2 – are more efficient than post-mitotic oligoden-

drocytes in sustaining the anatomical and functional

restoration of myelin integrity, as indicated by experi-

ments involving transplantation into chemically demye-

linated rat spinal cord white-matter areas [14–16].

Whatever the cell driving axon re-ensheathment in vivo,
the process of functional remyelination is often incom-

plete and limited in MS. Although the ultimate reason

why spontaneous remyelination fails over time in MS

remains unknown, some explanations can be put

forward. In an elegant review by Franklin [8], the most

likely causes of remyelination failure in MS are

summarized, as follows: (1) loss of OPCs as well as a

scarce ability of these cells to differentiate and
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remyelinate injured axons; (2) failure of OPCs to

‘respond’ to demyelination; (3) selective depletion of

myelinating cells around demyelinating areas over years;

(4) inhibition of remyelination as result of a ‘delicate’

balance between pro-inflammatory and pro-remyelinat-

ing effects of cytokines; (5) limitation of endogenous

OPC migration to sites of injury by reactive astrocytic

scar formation; and (6) acute and/or chronic loss of axons.

Different sources of myelin-forming cells for
central nervous system remyelinating
approaches
Since the early 1970s, several transplantation procedures

aimed at restoring the myelin architecture within CNS

demyelinated areas have been developed (Table 1 [17–

21,22 .,23–37,38 .,39..,40.,41,42]). Different types of

myelin-forming cells have been transplanted into

rodents affected by genetic, chemical or autoimmune

experimental CNS demyelination (Table 1 [17–21,22.,

23–37,38.,39..,40.,41,42]). However, these approaches

have shown serious limitations [43]. In particular, line-

age-restricted myelinogenic cells show limited growth

and expansion characteristics in vitro [44,45] and, once

transplanted (in vivo), induce remyelination only within

restricted CNS areas close to the transplantation site

[43,46].

Mature oligodendrocyte and oligodendrocyte

progenitor cells

Post-mitotic oligodendrocytes as well as OPCs have

been widely used to promote remyelination in rodent

models of focal CNS demyelination. When focally

injected within the site of chemically induced (i.e. using

ethidium bromide) myelin damage, cultured oligoden-

drocytes showed a poor remyelination capacity [17–19],

whereas OPCs displayed greater mitotic, migratory and

reparative properties [20,21,47]. Interestingly, trans-

planted OPCs seem to be more efficient than endogen-

ous OPCs in repairing the myelin sheath [48]. Very

recently, A2B5+/poly-syalilated-neural cell adhesion mo-

lecule (PSA-NCAM)7 enriched OPCs have been

extracted from either foetal human forebrain or adult

human brain white matter and then xenografted

intracallosally to the forebrain of newborn mice affected

by genetically determined myelinopathy (e.g. shiverer,

shi/shi). Both OPC populations were found dispersed

throughout the brain white matter, differentiated into

oligodendrocytes and remyelinated nude axons; the

adult OPCs myelinating the shi/shi brain more rapidly

(i.e. in 4 weeks as opposed to 12 weeks) and efficiently

than the foetal counterpart [22 .].

Schwann cells

The well-established ability of Schwann cells to

myelinate CNS demyelinated areas [23] has fostered

the wide use of these cells as an alternative cell source to

drive exogenous remyelination [43]. The main advan-

tage of using these peripheral nervous system myelin-

forming cells is that Schwann cells can be obtained from

sural nerve biopsies, cultured and expanded in vitro
under appropriate conditions, cryopreserved and finally

auto-transplanted into demyelinated CNS areas. More-

over, if the (auto)immune attack in MS is directed

against oligodendrocyte-specific antigens, transplanted

autologous Schwann cells might escape this aberrant

reaction. Rodent, monkey and human Schwann cells

have been successfully used to repair myelin sheaths and

restore axonal conduction in focally demyelinated areas

of either the CNS or the peripheral nervous system [23–

25]. As a consequence of these successful studies, a first

phase I clinical trial has been performed in patients with

MS. Between July 2001 and April 2002, autologous

Schwann cells were transplanted intracranially into single

demyelinating lesions from three different patients

affected by secondary progressive MS, progressive

relapsing MS, and primary progressive MS. Although

the study demonstrated the safety of the transplantation

procedure, brain biopsies performed 5 months after

transplantation, in the same area where Schwann cells

had been transplanted did not show any direct evidence

of surviving Schwann cells in vivo. Early in 2003,

the study was discontinued (http://www.myelin.org/

06232003.htm).

Olfactory ensheathing cells

Olfactory ensheathing cells are pluripotent cells belong-

ing to the peripheral olfactory system and are closely

located to axons of the first cranial nerve. These cells

display properties of both astrocytes and Schwann cells.

Although olfactory ensheathing cells normally do not

produce myelin, studies have shown that they can

remyelinate large axons – with a Schwann-cell-like

pattern of myelin [26] – both in vitro [49] and in vivo
[27–30]. In particular, cell suspensions of acutely

dissociated olfactory ensheathing cells from neonatal

rats remyelinate and enhance axonal conduction when

focally injected into ethidium bromide-demyelinated

areas of the dorsal columns of the spinal cord [27].

Moreover, xenotransplanted canine, human or porcine

olfactory ensheathing cells, isolated from the adult

olfactory bulb, have been capable of extensive functional

remyelination following transplantation into demyeli-

nated rat CNS [28–30].

The use of neural stem cells in remyelinating
therapies
As previously discussed, the intrinsically complex

nature of MS – in particular its chronicity and multi-

focality – poses great challenges for cell-based remye-

linating therapies. Two major requirements have to be

satisfied: there must be (1) an unlimited source of cells,

and (2) the possibility of accessing several damaged
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Table 1. Cell-based therapies in experimental demyelinating models

Cell source Experimental model Route of cell administration Outcome of study Reference

Oligodendrocytes
Rat post-natal CNS glial cells EB-induced lesion in

X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive remyelination 17

Mouse post-natal glial cells EB-induced lesion in
X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive remyelination 18

Rat post-natal and adult CNS
glial cells

EB-induced lesion in
X-irradiated rats (adult)

Focal (intralesional) Extensive remyelination (more
robust for adult CNS cells)

19

OPCs
Rat adult growth factor-
expanded O-2A progenitor
cells

EB-induced lesion in
X-irradiated rats (adult)

Focal (intralesional) Extensive remyelination 20

Mouse adult oligodendroglial
lineage cells

Mouse shiverer (shi/shi)
(adult)

Focal (telencephalon) Extensive remyelination
(A2B5+O4– progenitors
migrated more than
O4+GalC– cells)

21

Human adult and foetal
oligodendroglial lineage cells

Mouse shiverer (shi/shi)
(adult)

Focal (corpus callosum) Extensive remyelination (more
robust for adult CNS cells)

22.

Schwann cells
Rat adult Schwann cells EB-induced lesion in

X-irradiated rats (adult)
Focal (intralesional) Extensive remyelination 23

Monkey (Macaca fascicularis)
perinatal and adult Schwann
cells

LPC-induced demyelination
of the dorsal funiculus of the
spinal cord of monkeys (adult)

Focal (intralesional) Extensive remyelination 24

Human adult Schwann cells EB-induced lesion in
X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive remyelination
Improvement of axonal
conduction velocity

25

OECs
Rat adult clonal OEC cell line EB-induced lesion in

X-irradiated rats (adult)
Focal (intralesional) Extensive remyelination

(P0+-patterned myelin sheaths)
26

Rat post-natal acutely
dissociated OECs

EB-induced lesion in
X-irradiated rats (adult)

Focal (intralesional) Extensive remyelination
Improvement of axonal
conduction velocity

27

Canine adult OECs EB-induced lesion in
X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive remyelination 28

Human adult OECs EB-induced lesion in
X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive peripheral
remyelination

29

Pig adult OECs EB-induced lesion in
X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive peripheral
remyelination
Improvement of axonal
conduction velocityAxonal
regeneration

30

ES cells
Rat ES cells 1-week-old myelin-deficient

(md) rats
Focal (spinal cord) Abundant myelination

No evidence of tumour
formation

31

Mouse ES cells Thoracic spinal cord contusion
plus immunosuppression in rats
(adult)

Focal (intralesional) Differentiation into astrocytes,
oligodendrocytes and neurons
No evidence of tumour
formation

32

Mouse ES cells EB-induced or LPC-induced
spinal cord demyelination plus
immunosuppression in rats
(adult)
Mouse shiverer (adult)

Focal (intralesional) Extensive remyelination
Scarce astroglial differentiation
No evidence of tumour
formation

33

Mouse C57BLxBALB/c ES
cells

Mouse heterogeneous stock
HS/Ibg (adult)

Focal (hippocampus) Extensive growth (teratoma)
causing the death of the host

34

NPCs
Mouse embryonic (E16) neural
precursor cells

Mouse shiverer (post-natal
and adult)

Intrathecal (lateral ventricles,
cisterna magna)

Long-term grafting
Macroglial differentiation
Extensive remyelination

35

Human adult neural precursor
cells

EB-induced lesion in
X-irradiated rats plus
immunosuppression (adult)

Focal (intralesional) Extensive remyelination
Improvement of axonal
conduction velocity

36

(continued overleaf )
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areas of the CNS at the same time. As we discuss in

detail later on, the functional and morphological

properties of uncommitted neural precursors, such as

neural stem cells (NSCs), might be envisaged as

providing a promising alternative for transplantation

approaches in MS. However, there are some preliminary

questions that need to be solved before the prospecting

of any potential human application of such therapies: (1)

the ideal stem cell source for transplantation; (2) the

route of cell administration; and (3) the differentiation

and persistence of cells transplanted into the targeted

tissue. Last, but not least, functional and long-lasting

integration of transplanted cells into the host tissue has

to be achieved.

The cell source

Whatever the organ or tissue necessities, the ‘gold

standard’ cell for replacement therapies has to be

inherently plastic. Stem cells can fulfil this criterion

since they are intrinsically able to adapt their cell fate to

different environmental needs. Both embryonic stem

cells and adult neural stem cells (aNSCs) might

represent the ideal cell source for cell replacement-

based therapies in CNS disorders. Embryonic stem cell-

derived neural progenitors, although representing a

promising source of NSCs, have not been consistently

used for transplantation purposes so far [50,51].

Embryonic stem cells

Embryonic stem cells, derived from the inner cell mass

of blastocyst-stage embryos, are totipotent cells able to

give rise to a differentiated progeny representative of all

three embryonic germ layers as well as of the extra-

embryonic tissues supporting development. Embryonic

stem cell lines can actually be established from virtually

all mammals [52,53]. In humans, blastocysts for the

establishment of renewable human embryonic stem cell

lines can actually be obtained from either supernumerary

embryos (from in-vitro fertilization procedures) or from

embryos specifically created for research purposes (i.e.

nuclear transfer, parthenogenetic activation of the egg)

[54–56,57..]. Embryonic stem cells can be propagated

(under certain in-vitro conditions) almost indefinitely,

with maintenance of a normal karyotype and totipotency,

as was recently shown by the culturing of embryonic

stem cell lines in the presence of leukaemia inhibitory

Table 1. (continued )

Cell source Experimental model Route of cell administration Outcome of study Reference

Rat foetal hippocampal neural
precursor cells

Thoracic spinal cord contusion
in rats (adult)

Intrathecal (fourth ventricle) Wide CNS distribution
Prevalent astroglial
differentiation
Scarce SC differentiation

37

Rat post-natal striatal neural
precursor cells

SCH-induced EAE in rats
(adult)

Intrathecal (lateral ventricles,
sub-arachnoid space of the
spinal cord)

Radial migration to inflamed
white matter of the brain
Prevalent glial differentiation

38.

Mouse adult subventricular
zone neural precursor cells

MOG35-55-induced EAE in
mice (adult)

Intrathecal
Intravenous

Selective homing within
inflamed CNS areas
Extensive remyelination
Prevalent oligodendroglial and
neuronal differentiation
Rescue of endogenous OPCs
Clinical amelioration
Improvement of axonal
conduction velocity

39..

Rat post-natal striatal neural
precursor cells

SCH-induced EAE in rats
(adult)

Intrathecal (lateral ventricles) Radial migration to inflamed
white matter of the brain
Prevalent glial differentiation
Attenuation of brain
inflammation
Clinical amelioration

40.

BMSCs
Rat adult bone marrow cell
suspension

EB-induced spinal lesion in
X-irradiated rats (adult)

Intravenous Extensive remyelination
Improvement of axonal
conduction velocity

41

Rat adult bone marrow stromal
cells

EB-induced spinal lesion in
X-irradiated rats (adult)

Focal (intralesional) Extensive remyelination
Improvement of axonal
conduction velocity

42

BMSC, bone marrow stem cell; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; EB, ethidium bromide; ES,
embryonic stem cells; LPC, lysophosphatidyl choline; MOG, myelin oligodendrocyte glycoprotein; NPC, neural precursor cell; OEC, olfactory
ensheathing cell; OPC, oligodendrocyte progenitor cell; P0, protein 0, one structural component of peripheral nerve myelin; SC, Schwann cell; SCH,
spinal cord homogenate; aUsed to indicate genetically heterogeneous outbred mice, which are usually developed by crossing inbred strains (i.e. A,
AKR, BALB/c, C3H/2, C57BL, DBA/2, Is/Bi, and RIII) and maintained by random mating of families, avoiding common grandparents for several (i.e.
450–60) generations.
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factor [58]. Embryonic stem cells can be also induced to

differentiate in vitro in almost all cell types of the body

[59–61], including neural cells, which can be obtained by

supplying cells with growth factors such as epidermal

growth factor, platelet-derived growth factor, and fibro-

blast growth factor-2 [31,62,63]. When transplanted in

rodent models of either genetically determined or

chemically induced demyelination (both within the

brain and the spinal cord), embryonic stem cells have

been able to differentiate into glial cells and re-ensheath

demyelinated axons in vivo [31–33]. However, most of

the recent experimental transplantation studies involving

embryonic stem cells have been complicated by the

formation of heterologous tissues and teratomas within

the organ of transplantation [34,64,65], thus suggesting

that, at least in certain circumstances, the cross-talk

between transplanted pluripotent embryonic stem cells

and the tissue of transplantation might not adequately

control ES cell differentiation. To overcome such

limitations, at least partially, protocols for generating, in
vitro, high numbers of cell type-specific neural precur-

sors (e.g. oligodendroglial lineage cells) from embryonic

stem cells have been recently developed [50,51].

Adult neural stem cells

Mammalian aNSCs support neurogenesis and gliogen-

esis within restricted areas of the CNS throughout

adulthood, can undergo extensive in-vitro expansion

upon epigenetic stimulation, and possess the capacity to

generate a progeny of neural cells which can integrate

into, and repair, the tissue of origin [66,67]. These cells

can be isolated from foetal as well as adult brains and can

be expanded and maintained safely in a chemically

defined medium for years, thus supporting the concept

that these uncommitted NSCs might represent a renew-

able source of cells that can be used for transplantation

procedures [68,69 ..]. These cells, in fact, show: (1)

growth factor-dependent proliferation and a stable

growth rate; (2) a capacity for self-renewal; (3) multi-

potentiality; and (4) functional plasticity either over

serial in-vitro passaging or after several freezing–thawing

cycles [70,71]. Furthermore, aNSC plasticity and func-

tional flexibility can be modulated in vitro by exposure to

different growth factors [66]. As an example, leukaemia

inhibitory factor, brain-derived neurotrophic factor,

ciliary neurotrophic factor, neurotrophin-3, and neuro-

trophin-4 drive aNSCs towards a neuronal fate (up to 40–

60% of cells in culture), whereas bone-morphogenetic

proteins, ciliary neurotrophic factor and leukaemia

inhibitory factor increase the number of aNSC-derived

astrocytes [72,73].

In-vivo experiments designed to repair a demyelinated

CNS by the transplanting of multipotent aNSCs have

shown that these cells might survive within the host

CNS, display notable migratory properties from the site

of grafting, and maintain their multipotency [35]. In

experimental autoimmune, chemical or traumatic CNS

demyelination, aNSCs – transplanted intraparenchy-

mally, intracerebroventricularly or intravenously – show

the ability to selectively reach the areas of tissue

damage, to differentiate into axon-ensheathing oligoden-

drocytes, and to promote functional recovery

[36,37,38.,39..,40.,74.]. Notably, aNSC transplants, in

both healthy and diseased rodents, have not induced

tumour formation, thus strongly suggesting that the

tumorigenic potential in vivo of such a potent cell source

is minimal.

The route of cell administration

The route of cell administration represents another key

issue for NSC transplantation procedures in multifocal

CNS diseases. On the one hand, the anatomo-patholo-

gical features of focal CNS disorders, such as Parkin-

son’s disease or spinal cord injuries, would suggest that

direct intralesional cell transplantation might facilitate

tissue regeneration within a specific area of the CNS.

On the other hand, the challenge posed by the

mutifocality of certain CNS disorders, such as MS,

would, per se, limit the feasibility of certain cell

replacement-based therapies. However, some recent

experiments have shown that, at least, in multifocal

inflammatory brain disorders these limitations can be

overcome by injecting therapeutic cells (e.g. bone

marrow cells, mesenchymal cells, aNSCs) into the

blood stream (intravenously) or into the cerebrospinal

fluid circulation (intracerebroventricularly). Once intra-

venously or intracerebroventricularly injected, these

cells travel along these two bodily fluids and reach

multiple inflamed areas of both the brain and the spinal

cord. This specific homing has been explained, at least

in part, by the constitutive expression by transplanted

stem cells of a wide array of inflammatory molecules

such as adhesion molecules (i.e. integrins, selectins,

immunoglobulins, etc.), chemokines, cytokines and

chemokine receptors [39..,75–80,81 .]. In particular,

integrins, which, during development, mobilize

precursors along patterned migration and differentiation

pathways [81.,82–84], promote selective CNS homing

through the interaction between transplanted cells

and integrin receptor-expressing activated endothelial

and ependymal cells surrounding inflamed brain

tissues [85–88]. Once firmly anchored to brain micro-

vasculature, transplanted cells might follow a gradient

of chemoattraction which is mainly dictated by

the expression of chemokine/cytokines and their

receptors at the site of inflammatory brain lesions

[37,38 .,39..,40.,74.,88,89.,90]. This ‘chemoattractive’

hypothesis is strongly supported by our recent demon-

stration that intravenously and intracerebroventricularly

administered mouse aNSCs promote anatomical and

functional recovery of myelin sheaths in rodent EAE by
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selectively homing into inflammatory brain and spinal

cord areas via membrane expression of CD44 and very

late antigen-4 [39..]. Since these two latter molecules

are crucial for the specific homing of encephalitogenic

lymphocytes into the CNS parenchyma during EAE, it

can be speculated, therefore, that integrin-expressing

aNSCs retrace some encephalitogenic lymphocyte-

specific homing pathways for exerting their therapeutic

effect.

Differentiation and persistence of neural stem cells in

the targeted tissue

Ideally, once in the target organ, therapeutic stem cells

should differentiate into the appropriate daughter cells

and persist as long as needed at the site of engraftment.

However, although very little is known about the

mechanisms instructing the terminal differentiation of

stem cells in vivo, there is strong evidence that the local

environment might dictate the fate of transplanted

uncommitted stem cells. In this respect, undifferentiated

multipotent aNSCs or even totipotent embryonic stem

cells, transplanted in different experimental neurological

conditions, have shown a considerable capacity to restrict

their fate to tissue-specific cues and replace non-

functioning neural cells of different lineages.

Totipotent embryonic stem cells display a preferential

terminal differentiation into myelinating oligodendro-

cytes when transplanted into rodents affected by

experimental acute spinal cord injury [31–33]. Even

more efficiently, multipotent growth factor-responsive

aNSCs have shown glial lineage-restricted fate when

transplanted in animal models of myelin dysfunction

(e.g. EAE, spinal cord injury) [36,37,38.,39..,40.,74.,

89.]. Thus, the local environment may dictate the fate of

transplanted pluripotent or multipotent stem cells.

However, transplanted stem cells might exert their

therapeutic effect not only by differentiating into line-

age-restricted daughter cells and by functionally inte-

grating into the host tissue. It has been recently shown

that upon transplantation – no matter what the

characteristics of the CNS injured area into which cells

have been transplanted – aNSCs might remain in an

undifferentiated state (e.g. lacking antigens of differ-

entiation, having a round morphology, and having

perivascular localization) but continue to release neuro-

protective growth factors (fibroblast growth factor-2,

brain-derived neurotrophic factor, glial cell line-derived

neurotrophic factor, etc.) [38.,39..,91.]. This latter

evidence might suggest that aNSC-dependent brain

repair may also be due to a ‘bystander’ activity of stem

cells modulating the rescue of neurons and/or oligoden-

drocytes via both the constitutive or environment-

induced release of neurotrophic molecules and the

inhibition of myelin-reactive encephalitogenic T-cell

proliferation [40.].

Functional integration

The functional integration of stem cells at the site of

homing/transplantation is the most critical issue.

Although indications that stem cells can reach the target

organ and differentiate into the appropriate lineage exist,

there is still scarce evidence that these cells can

reconstruct the three-dimensional brain architecture

and give rise to properly functioning cells integrating

into the brain circuitries. Further studies fulfilling several

strict criteria are therefore necessary to determine

whether a stem cell has generated a functional neuronal

or glial cell. So far, most studies on NSCs have relied

strictly on morphological or immunohistochemical evi-

dence.

Bone marrow stem cells: an alternative source of stem

cells for remyelinating therapies

Bone marrow stem cells (BMSCs) retain the ability

throughout adult life to self-renew and differentiate into

cells of all blood lineages. These adult cells have

recently been shown to have the capacity to differentiate

into other specific cell types (e.g. muscle, skin, liver,

lung) including neural cells when transplanted both in

rodents and humans [92,93,94..,95.,96]. The most

challenging example of the contribution of these cells

to the cytoarchitecture of the brain comes from recent

reports showing that, in humans affected by haematolo-

gical malignancies, peripherally injected BMSCs enter

the brain and produce new neural cells (i.e. neurons,

microglia) [94..,95.,96]. Early this year, Weimann and

colleagues [95.] made the surprising discovery of Y-

chromosomes in cerebellar Purkinje neurons of women

who had received bone marrow transplants from male

donors. Along with this cogent example of BMSC

plasticity, there are other reports that collectively suggest

that these cells could contribute to the generation of new

neurons in the adult brain by means of (1) transdiffer-

entiation (direct conversion of transplanted cells into

neurons) [93,94 ..,95.] and/or (2) cell fusion (assimilation

of transplanted cells or their progeny into existing

neurons, and formation of heterokaryons) [97..]. Along

with these pieces of physiological evidence, there are

also recent results indicating that BMSC plasticity might

contribute to remyelination. In rats with a demyelinated

lesion of the spinal cord, intravenous or brain injection of

acutely isolated mononuclear BMSCs resulted in varying

degrees of remyelination that were proportional to the

number of injected cells [41,98.]. Moreover, bone

marrow-derived stromal cells from green fluorescent

protein-expressing mice (immunoreactive for collagen

type I, fibronectin, and CD44) determined remyelination

and improvement of axonal conduction velocity once

transplanted by direct microinjection into the demyeli-

nated spinal cord of immunosuppressed rats [42].

Together, these findings support the concept that

BMSCs might be useful as a therapeutic tool for brain
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repair. However, despite this experimental and human

evidence, the actual therapeutic contribution of BMSC

transplantation in brain pathologies remains controversial

[93,94 ..,95.,96,97 ..,99–101].

Conclusion
Since the first transplant of Schwann cells into the spinal

cord of rodents in which an acute demyelinating lesion

had been induced [23], we have witnessed increased

interest in experimental cell-based transplantation ap-

proaches aimed at fostering the biological and molecular

mechanisms underlying CNS repair. Theories assuming

that no renewal potential is identified within the adult

CNS have been contravened, new promising sources of

myelinogenic cells for transplantation purposes (i.e.

olfactory bulb ensheathing cells, adult and embryonic

stem cells) have been characterized, and new cell-

replacement strategies have been proposed and estab-

lished. A better understanding of the dynamics of

endogenous remyelination has been achieved, and

insights into the process of remyelination driven by

site-specific myelin-forming cell transplantation have

been obtained. This has led to the first clinical trial –

performed in patients with MS – based on autologous

Schwann cell transplantation into brain areas of auto-

immune demyelination. However, the first negative

results of this approach have dampened most of the

expectations raised by the last 25 years of successful

experimental cell-based approaches performed in both

rodents and non-human primates. Together with the

above negative evidence, experimental cell-based trans-

plantation approaches for remyelination have encoun-

tered other main limitations, which have not been

overcome yet: (1) the limited amount of myelinating

cells that can be grown in vitro and (2) the limited

migratory capacity of myelinating cells once trans-

planted. New hopes have been raised by the encoura-

ging preliminary results obtained from transplanting

aNSCs and BMSCs into demyelinated rodents

[37,38 .,39..,40.,74.,89.]. However, although somatic

stem cells (whether of neural or haematopoietic origin)

may represent a new and promising area, further studies

are required to assess the safety, efficacy and in-vivo

plasticity of these cells before any future human

applications of these new approaches in MS and other

demyelinating disorders can be envisaged. The great

challenge is now to develop a reliable and reproducible

approach leading to complete functional and anatomical

rescue of the myelin architecture in patients with MS.
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