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Abstract

Spontaneous neural tissue repair occurs in patients affected by inflammatory and degenerative disorders of the central nervous system

(CNS). However, this process is not robust enough to promote a functional and stable recovery of the CNS architecture. The development of

cell-based therapies aimed at promoting brain repair, through damaged cell-replacement, is therefore foreseen. Several experimental cell-

based strategies aimed at replacing damaged neural cells have been developed in the last 30 years. Although successful in promoting site-

specific repair in focal CNS disorders, most of these therapeutic approaches have failed to foster repair in multifocal CNS diseases where the

anatomical and functional damage is widespread. Stem cell-based therapies have been recently proposed and might represent in the near

future a plausible alternative strategy in these disorders. However, before envisaging any human applications of stem cell-based therapies in

neurological diseases, we need to consider some preliminary and still unsolved issues: (i) the ideal stem cell source for transplantation, (ii) the

most appropriate route of stem cell administration, and, last but not least, (iii) the best approach to achieve an appropriate, functional, and

long-lasting integration of transplanted stem cells into the host tissue.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Neural stem cells (NSCs) are considered a heterogeneous

population of mitotically active, self-renewing, multipotent,

immature progenitor cells of both the developing and the

adult nervous system showing complex patterns of gene

expression that vary in space and time [47,72]. Early in the

1960s, neural cells behaving as stem entities were isolated

from the embryonic mammalian central as well as peripheral

nervous system [23,51,75,87,94]. Since then, stem cells

have been isolated virtually from the entire mammalian

adult central nervous system (CNS) and regions such as the

subventricular zone (SVZ) of the lateral ventricles, the

hippocampus and the cerebral cortex have been shown to

contain stem-like cellular elements [10,40,76,77,80,82].

During development, the number of uncommitted endoge-

nous NSCs decreases over time, while the activation of

cellular programs of differentiation into lineage (neuronal or

glial)-restricted precursors increases [7,71]. In the adult

CNS, stem-like cells–although showing modest prolifera-

tion characteristics–are capable of driving neurogenesis in

specialized regions of the brain (i.e., the olfactory bulb, the

hippocampus, the SVZ, the central canal of the spinal cord)

which behave as highly specialized tissue niches [5,6,26,33,

66,92,107]. On the other hand, cycling progenitor cells of

apparent glial lineage, dispersed throughout the whole brain

parenchyma, drive adult gliogenesis [42].

Whatever the terminology accepted–stem cells, precur-

sors or progenitors–the origin of this discrete population of

undifferentiated neural cells is still being debated. So far,

two principal theories have been put forward. One theory

claims that the true NSCs of the adult SVZ differentiate

from ependymal cells expressing the intermediate filament

protein nestin [49], while the other theory–recently sup-

ported by human data–identifies NSC as slowly dividing

astrocyte-like (type B) subependymal cells expressing glial

fibrillary acidic protein (GFAP) and nestin [30,64,82]. These

multipotent, type B, NSC–which reside within the SVZ–are

believed to generate in vivo at least three different popu-

lations of lineage-committed transit-amplifying progenitors

[type C, type D cells and white matter progenitor cells

(WMPC)] of both neuronal and glial phenotype. Proliferat-

ing type C neuroblasts migrate from the SVZ to the

olfactory bulb trough the rostral migratory stream (RMS)

of the adult brain and give rise to type A neurons. Mito-

tically active type D cells remain confined to the sub-

granular zone (SGZ) of the dentate gyrus and give rise to

neuronal progenitors, whereas WMPC derived from SVZ-

resident multipotent adult NSC reside within the subcortical

parenchyma and give rise to astrocytes and oligodendro-

cytes. Neuronal and glial progenitors persist in both gray

and white matter and their frequency within the adult CNS

is maintained during adult life. Signals driving either glio-

or neurogenesis in the adult brain are redundantly expressed

over time, thus contributing to either physiological stem cell

asymmetrical division or finalistic lineage-restricted diffe-
rentiation for tissue replacement [29,42]. However, the

relationship between these pools of endogenous progenitors

and the identified endogenous stem cells of the CNS still

remains to be elucidated.
2. Endogenous neural stem cells for brain repair

There is compelling evidence showing that ontogenetic

processes governing NSC maintenance, fate, and specifica-

tion occur in brain repair strategies during adult life.

Notably, it has been recently shown that endogenous NSCs

may sustain neurogenesis and gliogenesis in response to

several different injuries such as those occurring during

inflammatory, ischemic, or traumatic events [15,31,44,

65,68,91]. These pathogenic events might trigger a cascade

of cellular and molecular signals–possibly via the release of

soluble mediators (e.g., cytokines, chemokines, metallopro-

teases, adhesion molecules, etc.)–capable of supporting

neurogenesis and gliogenesis that, in turn, drive brain repair.

In chronic experimental autoimmune encephalomyelitis

(EAE), the animal model for multiple sclerosis (MS),

mitotically active progenitor cells, residing either in the

SVZ of the brain or in the subependymal layer of central

canal of the spinal cord, change their physiological destiny–

which is basically that of migrating along the RMS to the

olfactory bulb or to the laterals columns of the spinal cord

[5,92], respectively–and migrate specifically into CNS areas

of demyelination where they differentiate mostly into glial

cells [15,68]. In experimental models of spinal cord injury

(SCI) or ischemic stroke, neurogenesis of endogenous

NSCs–residing close to the traumatized or ischemic regions

and surviving to the injury–occurs within 1 week after the

pathogenic event. Nestin-reactive proliferating progenitor

cells have been, in fact, found at the border of the ischemic

and traumatized areas while supporting post-injury neuro-

genesis within a zone comprised between the damaged

tissue and the surrounding intact cerebral parenchyma

[31,65,91].

There is accumulating evidence indicating that endoge-

nous neurogenesis and gliogenesis may occur as part of an

bintrinsicQ brain self-repair process during adulthood, which

supports the idea of developing therapeutic strategies for

brain disorders based on the use of NSC transplantation.
3. Neural stem cell transplantation in CNS disorders

In CNS disorders characterized by neuronal or glial loss–

e.g., stroke, Parkinson’s disease, MS, SCI–cell-based

replacement therapies may represent a promising alternative

therapeutic approach. However, there are some preliminary

questions that need to be solved before envisaging any

potential human application of such therapies: (i) the ideal

cell source for transplantation; (ii) the route of cell adminis-

tration; and (iii) the differentiation and persistence of NSC
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into the targeted tissue. Last but not least, functional and

long-lasting integration of transplanted cells into the host

tissue has to be achieved.

3.1. The source of cells

Whatever the organ or tissue requirements, the ideal cell

for replacement therapies has to be plastic in its essence.

Stem cells can meet this criterion since they are intrinsically

able to adapt their fate to different environmental needs.

Both embryonic stem cells (ES) and adult NSC (aNSC)

might represent the ideal cell source for cell replacement-

based therapies in CNS disorders. Embryo-derived neural

cells, although representing a promising source of NSC,

have not been consistently used so far for transplantation

purposes [38,90,99].

3.1.1. Embryonic stem (ES) cells

ES cells, derived from the inner cell mass of blastocyst-

stage embryos, are totipotent cells able to give rise to a

differentiated progeny representative of all three embryonic

germ layers as well as of the extra-embryonic tissues

supporting development. ES cell lines can be established

from virtually all mammals [35,79]. In humans, blastocysts

for the establishment of renewable human ES cell lines may

be obtained from either supernumerary embryos (from in

vitro fertilization procedures) or from embryos specifically

created by research purposes (i.e., nuclear transfer, parthe-

nogenetic activation of egg) [25,85,101,103]. ES cells can

be propagated indefinitely under certain in vitro conditions

while maintaining a normal karyotype and totipotency, as

has been recently shown by culturing ES cell lines in

presence of leukemia inhibitory factor (LIF) [86]. ES cells

can also be induced to differentiate in vitro into almost all

cell types of the body [74,79] including neural cells that can

be obtained by growing cells in the presence of neurotrophic

factors such as epidermal growth factor (EGF), platelet-

derived growth factor (PDGF)-a, and fibroblast growth

factor (FGF)-2 [11,36,37,50,54,75,112]. However, while

totipotent ES cells have been used for transplants [57,78],

there are no consistent data on the use of ES-derived lineage

restricted neural cells.

When ES cells were transplanted into rodents with either

genetically-determined or chemically-induced demyelina-

tion (both within the brain and the spinal cord), they

differentiated into glial cells and remyelinated demyelinated

axons [17,54]. However, most of the recent experimental

transplantation studies involving ES cells have been

complicated by the formation of heterologous tissues and

teratomas within the transplantation site [16,27,104,109]

suggesting that in certain circumstances cross-talk between

transplanted ES cells and parenchymal cells at the site of

transplantation has gone awry. To partially overcome such

limitation, protocols have been developed to generate in

vitro high numbers of cell type-specific neural precursors

(e.g., oligodendroglial lineage cells, dopaminergic neurons)
from ES cells [63,75,88,112]. A protein called stromal cell-

derived inducing activity (SDIA) which promotes neural

differentiation of mouse ES cells into dopaminergic neurons

in vivo, has been recently identified [63]. When SDIA-

induced dopaminergic neurons were transplanted into the 6-

hydroxydopamine (6-OHDA)-lesioned mouse striatum, they

integrated into the host tissue and remained positive for

tyrosine hydroxylase (TH) expression [63]. Moreover,

dopaminergic neurons have been obtained by generating

stable nuclear receptor related (Nurr)1 ES cell lines. Nurr1 is

a transcription factor that has been shown to have a role in

the differentiation of midbrain precursors into dopamine

neurons [111] and its overexpression in mouse ES cells

promotes an increase in the proportion of TH+ neurons from

5 to 50% in vitro. Once transplanted into the striatum of (6-

OHDA)-lesioned hemiparkinsonian rats, Nurr1-overex-

pressing cells integrated into the tissue of transplantation

and showed immunoreactivity for TH. They displayed

electrophysiological characteristics similar to those of

mesencephalic neurons and mediated a significant amelio-

ration of amphetamine-induced behavioral tests as com-

pared to (6-OHDA)-lesioned hemiparkinsonian rats

transplanted with naive ES cells [52].

3.1.2. Adult neural stem cells (aNSC)

Mammalian aNSC support neurogenesis and gliogenesis

within restricted areas of the CNS throughout adulthood.

They can undergo extensive in vitro expansion upon

epigenetic stimulation and possess the capacity to generate

a progeny of neural cells which can integrate into and repair

the tissue of origin [40,44,45,98]. These cells can be isolated

from fetal and adult human brains and can be expanded and

maintained safely in a chemically defined medium for years

possibly providing a renewable source of uncommitted

NSCs, that can be used for transplantation procedures

[81,100]. These cells show: (i) growth factor (GF)-dependent

proliferation and a stable growth rate; (ii) transcriptionally-

regulated capacity for self-renewal; (iii) multipotentiality;

and (iv) functional plasticity either over serial in vitro

passaging or after several freeze–thaw cycles [40,43,62].

aNSC plasticity and functional flexibility can be modulated

in vitro by the exposure to different growth factors [98]. LIF,

brain-derived neurotrophic factor (BDNF), ciliary neuro-

trophic factor (CNTF), neurotrophin (NT)-3, NT-4, sonic

hedgehog (Shh), and fibroblast-derived growth factor (FGF)-

8 drive aNSCs trough a neuronal fate (up to 40–60% of cells

in culture), whereas bone morphogenetic proteins (BMPs),

CNTF, and LIF increase the number of aNSC-derived

astrocytes [20,39,53].

In vivo experiments aimed at repairing injured CNS by

transplanting multipotent aNSC have shown that these cells

may survive to transplantation procedures within the host

CNS. They display notable migratory properties from the

site of grafting and maintain their multipotency. While

aNSC, transplanted either intraparenchymally or intrathe-

cally in healthy rodents show precise pathways of tissue
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invasion and neuronal (i.e., dopaminergic) differentiation

[32,34,110], there are data showing that these differen-

tiation patterns change when aNSC are transplanted into

rodents suffering from experimental CNS diseases. In

experimental autoimmune, chemical, or traumatic CNS de-

myelination, aNSCs transplanted intraparenchymally, intra-

cerebroventricularly (i.c.), or intravenously (i.v.) show

ability to migrate selectively to CNS areas of tissue damage

and to differentiate into axon-ensheating oligodendrocytes

that promote functional recovery [2,12,18,69,108]. Simi-

larly, site-specific dopaminergic neuronal differentiation has

been obtained by intrastriatal transplantation of undiffe-

rentiated syngenic or xenogenic (human) aNSC in rats

affected by experimental parkinsonism [56,89,110]. More

recently, i.v.-injected human aNSC have been efficacious in

promoting functional recovery in rats affected by both

experimental intracerebral hemorrhage or transient cerebral

ischemia via terminal differentiation into neurons (10%)

and astrocytes (75%) [24,48]. Notably, aNSC transplants

into both healthy and diseased rodents did not result in

tumor formation in immunodeficient mice, thus strongly

suggesting that the tumorigenic potential of these cells in

vivo is minimal [99].

3.2. The route of cell administration

The route of cell administration represents another key

issue when considering therapeutic NSC transplantation for

CNS diseases.

On one hand, the anatomy of focal CNS disorders, such

as Parkinson’s disease or SCI, would suggest that direct

intralesional cell transplantation might facilitate regenera-

tion of dopaminergic neurons within the substantia nigra or

protection of demyelinated axons within a specific segment

of the spinal cord, respectively. ES-cell-derived TH+ neu-

ronal precursors, when focally transplanted into the striatum

of 6-OHDA-lesioned rats release dopamine, extend axons,

form functional synaptic connections and modulate sponta-

neous and pharmacologically induced behavior [13,52].

After SCI and experimental ischemia in rodents, intrale-

sionally-transplanted aNSC integrate within the host tissue,

differentiate preferentially into glial cells, release neuro-

trophic growth factors [e.g., BDNF, glial-derived neuro-

trophic factor (GDNF), nerve growth factor (NGF)],

promote neurogenesis, and inhibit reactive astrogliosis thus

favoring motor recovery [9,21,55,95]. Furthermore, when

either neural-differentiated or fibroblast feeder-grown ES

cells are engrafted into acutely injured or chemically-

demyelinated spinal cords of rats, transplanted cells survive,

integrate, migrate (as far as 8 mm away from the lesion

edge), and finally differentiate into multiple neural cell types

(i.e., astrocytes, oligodendrocytes, and neurons) [54,58,76].

However, heterotopic migration or dispersion of trans-

planted cells has to be viewed as a potential risk of aNSC

transplants that could lower the therapeutic efficacy of

aNSC-based therapies.
On the other hand, the multifocality of certain CNS

disorders, such as amyotrophic lateral sclerosis, MS, or

Alzheimer’s disease, severely limits aNSC-based therapies.

However, some recent experiments have shown that in

multifocal inflammatory brain disorders, these limitations

can be overcome by injecting therapeutic somatic stem cells

(e.g., bone marrow cells, mesenchymal cells, NSC) into the

blood stream (i.v.) or into the cerebrospinal fluid circulation

(i.c.). aNSC transplanted in this fashion can reach multiple

inflamed areas in the brain and the spinal cord. This specific

homing can be explained, at least in part, by the constitutive

expression by aNSC of a wide array of inflammatory

molecules such as adhesion molecules (i.e., integrins,

selectins, immunoglobulins, etc.), chemokines, cytokines,

and chemokine receptors [69,96]. These molecules, which

mobilize precursors along patterned migration and diffe-

rentiation pathways during development [70,84,96], may

promote selective CNS homing because they support aNSC

interactions with integrin receptor-expressing activated

endothelial and ependymal cells surrounding inflamed brain

tissues [19,28,70]. Thus, aNSC are very likely to follow a

gradient of chemoattraction at the site of inflammatory brain

lesions [73,97]. This bchemoattractiveQ hypothesis is

strongly supported by a recent study showing that i.v.-

administered mouse aNSC promote anatomical and func-

tional recovery of the myelin sheath–in an experimental

model of autoimmune demyelination (namely, EAE)–by

selectively homing into inflamed brain and spinal cord areas

via membrane expression of CD44 and very late antigen

(VLA)-4 [69]. Since these two latter molecules are crucial

for the specific homing of encephalitogenic lymphocytes

into the CNS parenchyma during EAE, one might suggest

that aNSC recapitulate encephalitogenic lymphocyte hom-

ing pathways for reaching areas of inflammation. As a

further confirmation of this phenomenon, it has been

recently shown that aNSC are capable to target both

intracranial and extracranial tumors, when administered into

the peripheral vasculature [1,14]. The well-characterized

clonal NSC line C17.2 was injected into the tail vein of adult

nude mice with established experimental intracranial and/or

subcutaneous flank tumors of neural and non-neural origin

and the cells were subsequently found in various tumor sites

with very little accumulation in normal tissues [14].

3.3. Differentiation and persistence of neural stem cells in

the targeted tissue

Ideally, once in the target organ, therapeutic NSCs should

differentiate into the appropriate daughter cells and persist

as long as needed at the site of engraftment. However,

although very little is known about the mechanisms

instructing the terminal differentiation of NSC in vivo,

there is strong evidence that the local environment might

dictate the fate choice of transplanted uncommitted NSC. In

this respect, undifferentiated multipotent aNSC or even

totipotent ES cells, transplanted in different experimental
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neurological conditions, have shown considerable capacity

to restrict their fate to tissue-specific cues and replace non-

functioning neural cells of different lineages.

Totipotent ES cells display a preferential terminal

differentiation into either myelinating oligodendrocytes or

TH+ neurons when transplanted into rodents affected by

experimental acute SCI or 6-OHDA-induced Parkinsonism,

respectively [13,16,50,52,54,57]. Even more efficiently,

multipotent growth factor-responsive aNSCs show neuro-

nal- or glial-restricted fate when transplanted in animal

models of neuronal (e.g., Parkinson’s disease, stroke) or

myelin dysfunction (e.g., EAE, SCI) [21,24,32,48,55,95,

108,110], respectively. Thus, the local environment may

dictate the fate choice of transplanted NSC. However,

transplanted NSC might exert their therapeutic effect not

only by differentiating into lineage-restricted daughter cells

and by functionally integrating into the host tissue. What-

ever the characteristics of the model of transplantation, it

has been recently shown aNSCs may also remain in an

undifferentiated state in vivo. Discrete numbers of trans-

planted aNSCs fail to express differentiation antigens,

retain a rounded morphology, as well as perivascular

localization, but continue to release neurotrophic growth

factors (FGF-2, BDNF, GDNF, etc.) [9,55,67,95]. This

evidence suggests that aNSCs might repair brain damage

even when they remain in their undifferentiated state,

essentially acting as bystander regulators of neuron and/or

oligodendrocyte rescue via the release of neurotrophic

molecules.
4. Bone marrow stem cell therapies for brain repair

Bone marrow stem cells (BMSCs) have recently been

shown to have the capacity to differentiate into other

specific cell lineages (e.g., muscle, skin, liver, lung),

including neural cells, when transplanted in both rodents

and humans [59,60,106]. Although it is not yet clear which

fraction of BMSCs is more prone to differentiate into cell

types of a different embryonic origin in vivo (e.g., haema-

topoietic vs. mesenchymal cells), transdifferentiation of

BMSCs into neural cells deserves special attention due to

the potential importance of this biological event in cell-

based regenerative therapies for brain disorders.

The first and most challenging example of a possible

contribution of BMSCs to the cytoarchitecture of the brain

comes from a recent report showing Y-chromosomes in

cerebellar Purkinje neurons of women who had received

bone marrow transplants from male donors [106]. Along

with this evidence of BMSC plasticity, there are other

reports that collectively suggest that these cells could

contribute to generate new neurons in the adult brain by

means of (i) transdifferentiation (direct conversion of

transplanted cells into neurons) [59,60,105,106]; (ii) trans-

determination (direct conversion of transplanted stem cells

into a stem cell of a different embryonic origin) [105]; and/
or (iii) cell fusion (assimilation of transplanted cells or their

progeny into existing neurons and formation of hetero-

karyons) [8].

The demonstration that BMSCs are developmentally

plastic has encouraged many attempts to use BMSCs for

brain repair. BMSCs have recently been injected into

animals affected by experimental demyelination, ischemic

stroke, amyotrophic lateral sclerosis (ALS), and SCI

[3,4,41,46,83,113]. In rats with focal chemical demyelina-

tion of the spinal cord, collagen type I+/fibronectin+/CD44+

mouse BMSCs gave rise to new myelin forming cells in

vivo and determined improvement of axonal conduction

velocity, when transplanted i.v. or by direct microinjection

into the demyelinated spinal cord of immunosuppressed rats

[3,4,46]. When injected into adult mice in which focal

cerebral ischemia had been induced, transplanted Tie2-lacZ-

positive BMSCs–immunoreactive for von Willebrand factor

endothelial antigenic marker–were found in areas of neo-

vascularization at the border of the infarct [113]. Human

umbilical cord blood cells and hematopoietic stem cells–

directly transplanted into the spinal cord of rodent models of

SCI–survived within the host tissue, expressed specific

markers for astrocytes, oligodendrocytes, and neural pre-

cursors and promoted functional recovery [3,4,83]. Human

umbilical cord blood cells delivered i.v. into mice with

experimental ALS survived 10–12 weeks after infusion,

delayed disease progression and increased lifespan of

diseased mice. They entered regions of motor neuron

degeneration–both in the brain and in the spinal cord–and

expressed neural and astrocytic markers [41].

Although the abovementioned studies demonstrate that

BMSCs differentiating into brain cells might support func-

tional CNS repair, the real bbrain repair Q potential of this
cell source has been recently challenged by the demon-

stration that transdifferentiation in vivo of BMSCs into

mature, and properly functioning, neural cells is a very rare

event (e.g., 1 out of 500,000 cells) and may depend on cell

fusion rather than on brealQ transdifferentiation [22,61,102].
5. Conclusions

The identification and isolation of a discrete population

of uncommitted self-renewing NSCs both in embryos and in

specialized areas of the adult mammalian CNS–along with

the demonstration of their therapeutic potential in several

experimental models of human CNS diseases (e.g., SCI,

Parkinson’s disease, EAE, stroke, brain tumors)–has repre-

sented a milestone in the field of regenerative medicine

[77,87,93,94]. However, this is still a baby science suffering

from growing pain, and before envisaging any therapeutic

application of such cells in humans with brain disorders, we

need to confront with several, and still unsolved, problems:

(i) the ideal bstemQ cell source for transplantation; (ii) the

most appropriate in vivo and/or in vitro manipulations to

obtain the appropriate cells to transplant; (iii) a clinically
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applicable transplantation strategy (e.g., route of cell trans-

plantation in focal and multifocal CNS disorders); (iii) the

right timing for cell transplantation; and, finally, (iv) the

appropriate number of cells to transplant.
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