
REVIEW ARTICLE

Extracellular vesicles and their synthetic analogues in aging
and age-associated brain diseases

J. A. Smith • T. Leonardi • B. Huang • N. Iraci •

B. Vega • S. Pluchino

Received: 28 February 2014 / Accepted: 16 June 2014

� Springer Science+Business Media Dordrecht 2014

Abstract Multicellular organisms rely upon diverse

and complex intercellular communications networks

for a myriad of physiological processes. Disruption of

these processes is implicated in the onset and propa-

gation of disease and disorder, including the mecha-

nisms of senescence at both cellular and organismal

levels. In recent years, secreted extracellular vesicles

(EVs) have been identified as a particularly novel

vector by which cell-to-cell communications are

enacted. EVs actively and specifically traffic bioactive

proteins, nucleic acids, and metabolites between cells at

local and systemic levels, modulating cellular responses

in a bidirectional manner under both homeostatic and

pathological conditions. EVs are being implicated not

only in the generic aging process, but also as vehicles of

pathology in a number of age-related diseases,

including cancer and neurodegenerative and disease.

Thus, circulating EVs—or specific EV cargoes—are

being utilised as putative biomarkers of disease. On the

other hand, EVs, as targeted intercellular shuttles of

multipotent bioactive payloads, have demonstrated

promising therapeutic properties, which can potentially

be modulated and enhanced through cellular engineer-

ing. Furthermore, there is considerable interest in

employing nanomedicinal approaches to mimic the

putative therapeutic properties of EVs by employing

synthetic analogues for targeted drug delivery. Herein

we describe what is known about the origin and nature

of EVs and subsequently review their putative roles in

biology and medicine (including the use of synthetic

EV analogues), with a particular focus on their role in

aging and age-related brain diseases.

Keywords Extracellular vesicles � Exosomes �
Neurodegeneration � Aging � Drug delivery �
Nanomedicine

Introduction

Safe, efficacious and specific drug delivery is integral

to modern therapeutic medicine. The ability to opti-

mise the bioavailability, stability, and targeted uptake

of a therapeutic agent while simultaneously mitigating

toxicity, immunogenicity and off-target/side effects is

of utmost priority to in development of more effective

drugs, and in the treatment of otherwise incurable

diseases. Extensive efforts are being made in the
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modification or derivation of existing drugs, or the

development of new drug-delivery platforms, to achieve

these goals, often inspired by physiological mechanisms.

One such phenomenon is that of extracellular

vesicles (EVs), a type of naturally occurring nanove-

sicles that envelop, protect and shuttle their bioactive

cargo between cells in different systems (Thery 2011).

These extracellular organelles are no longer consid-

ered to be mere cellular debris (Cocucci et al. 2009),

nor are they just being proposed as circulating

diagnostic markers that mirror their parental cell’s

physiologic statuses, rather they appear to be central

players in a diverse, complex, and specific intercellu-

lar communication network (Simons and Raposo

2009). As EVs are implicated in a plethora of

physiological and pathological processes, a thorough

understanding their origin and function is of great

importance to medical science. Furthermore, their role

as natural molecular cargo carriers provides inspira-

tion for the design of new and improved therapeutic

platforms, be they emulating EVs or repurposing them

for medicinal applications.

Herein we review the current state of knowledge of

EVs, describing their various classes, and providing

examples of their function in disease, health, and

during the processes of brain aging. A broad overview

of the therapeutic potential of EVs is also provided, as

is a rundown of current synthetic nanotherapeutic

drug-delivery platforms that mimic the properties of

EVs. While the field of EV study is still largely in its

infancy, the therapeutic potential of EVs (and their

analogues) in aging and age-related disease, particu-

larly neurodegeneration, is plain to see.

Extracellular vesicles (EVs)

Characterisation of EVs

EV is a broad term used to describe membrane

structures secreted by cells into the extracellular space

to be later taken up by an target/acceptor cell (Raposo

and Stoorvogel 2013). Despite the lack of definitive

evidence for their physiological function in vivo, EVs

appear to constitute a newly recognized means of

communication found to be shared by almost every

cell type (Thery 2011).

While the description of EVs has historically been

burdened by a Byzantine nomenclature (Gould and

Raposo 2013), a systematic classification based on the

mechanisms of biogenesis and release of EVs (Akers

et al. 2013) allows for the categorization of EVs into

four broad groups:

(i) Exosomes homogenous saucer-shaped EVs

30–100 nm in diameter, from multivesicular

bodies (MVBs) of the endosomal pathway;

(ii) Shedding vesicles (or microvesicles) heteroge-

neous EVs 50–2,000 nm in diameter, from direct

blebbing of the cellular plasma membrane;

(iii) Retrovirus-like particles (RLPs) sized

90–100 nm, with a typical subset of retroviral

proteins but non-infectious, due to the lack of

genes required for full viral propagation; and

(iv) Apoptotic bodies 50–5,000 nm in diameter,

vesicles arising during the apoptotic fragmen-

tation of cells.

Other classes of EVs that fall outside these

classifications have recently been identified. For

instance, gesicles, approximately 100 nm in diameter

and slightly less dense than exosomes, are highly

fusogenic due to their origins in cells induced to

overexpress the spike glycoprotein of the vesicular

stomatitis virus (VSV-G) (Mangeot et al. 2011).

Moreover, exosome-like vesicles (20–50 nm) express-

ing the full-length 55-kDa tumour necrosis factor

(TNF) receptor 1 have been identified and may

originate from multivesicular internal compartments

(not necessarily being part of the endosomal system),

but their nature is not well defined (Hawari et al.

2004).

Considering that a single cell type can secrete

multiple EV classes (Heijnen et al. 1999; Deregibus

et al. 2007; Muralidharan-Chari et al. 2009), one of the

key challenges in the field is to establish methods

allowing for their discrimination and—in perspec-

tive—their characterization and fractionation. Differ-

ences in properties such as size, morphology and

density are not fully sufficient for a clear distinction

(Bobrie et al. 2011). Further characterization requires

biochemistry, qualitative and quantitative protein,

RNA and lipid characterization, and imaging such as

electron microscopy. Complementary to that, nano-

particle-tracking analysis allows for the determination

of EV size distribution based on the Brownian motion

of vesicles in suspension (Soo et al. 2012). Further-

more, a novel high-resolution flow cytometry–based

approach has been developed for quantitative high
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throughput analysis of immunolabeled vesicles (Nol-

te-’t Hoen et al. 2012; van der Vlist et al. 2012).

Nevertheless, while there is promiscuity in the

expression of protein markers between EV classes,

distinct combinations of markers are used to distin-

guish between different types of EVs. Exosomes are

characteristically enriched into endosome-associated

proteins [e.g., Rab GTPase, Soluble NSF Attachment

Protein (SNAP) receptors (SNAREs), annexins, and

flotillin], some of which are involved in MVB

biogenesis (e.g., Alix and Tsg101 van Niel et al.

2006). CD63 and CD9, members of the tetraspanin

family (Hemler 2003), are also potential markers of

exosomes (Escola et al. 1998; Bard et al. 2004).

Moreover, compared with plasma membrane-derived

vesicles, exosomes are highly enriched in cholesterol,

sphingomyelin, and hexosylceramides, at the expense

of phosphatidylcholine and phosphatidylethanolamine

(Wubbolts et al. 2003; Laulagnier et al. 2004; Subra

et al. 2007; Brouwers et al. 2013). Furthermore, the

constituent fatty acids of exosomes are primarily

saturated or monounsaturated.

General markers of microvesicles are less well-

defined, perhaps due to the diversity inherent in this

class, but recently ADP-ribosylation factor 6 (ARF6)

and vesicle-associated membrane protein 3 (VAMP3)

have been proposed as potential candidates (Muralidh-

aran-Chari et al. 2009). Shedding vesicles, ostensibly a

sub-type of microvesicle, typically exhibit high levels of

phosphatidylserine and are enriched in lipid raft-asso-

ciated proteins such as tissue factor and flotillin-1, as

well as various selectins and integrins, CD40 ligand,

complement receptor-1, and the matrix metalloprotein-

ases (MMP)-2 and -9 (Lee et al. 2011; Théry et al. 2009).

Retrovirus-like particles are less well studied,

though Gag protein (together with other endogenous

viral proteins) may be a general marker (Bronson et al.

1979; Boller et al. 1993; Mueller-Lantzsch et al. 1993;

Dewannieux et al. 2005).

Finally, thrombospondin (TSP), complement sub-

unit C3b and annexin V (all bound by phagocytes for

the final clearance), together with histones and frag-

ments of genomic DNA, are generally accepted

markers of apoptotic bodies (Théry et al. 2009).

Biogenesis of EVs

Exosomes are formed in MVBs (El-Andaloussi et al.

2013), whereas microvesicles originate by direct

budding from the plasma membrane (Raposo and

Stoorvogel 2013). Thus, the overall molecular machin-

eries involved in their formation and release are likely to

be different (Fig. 1). Nevertheless, it should be noted

that some aspects of their biogenesis might overlap. For

instance, it has been suggested that microvesicle gen-

eration may necessitate factors also involved in exosome

generation (Nabhan et al. 2012). Specifically, it was

observed that a class of microparticles known as arrestin

domain-containing protein 1 (ARRDC1)-mediated

microvesicles (ARMMs) form and bud from the plasma

membrane following an interaction between the tumour

susceptibility gene 101 (TSG101), an endosome-asso-

ciated protein implicated in exosome formation, and

ARRDC1, localised to the plasma membrane. More-

over, actin-myosin interactions seem to play a critical

role in the formation of all four types of EVs described

above (Gladnikoff et al. 2009; Piper and Katzmann

2007; Sebbagh et al. 2001; Muralidharan-Chari et al.

2009). For instance, increased phosphorylation of the

myosin light chain (MLC) has been shown to promote

the actin-myosin contraction force leading to membrane

blebbing; inhibitors of the MLC kinase were found to

decrease blebbing (Mills et al. 1998).

Exosomes

First identified by Rose Johnstone as a part of the

reticulocyte maturation (Johnstone et al. 1987), these

EVs were described as being secreted to remove

membranes and proteins in a process of reverse

endocytosis, and for this reason called exosomes. The

biogenesis and trafficking of exosomes is not fully

understood. They originate with the invagination of

clathrin-coated domains on the plasma membrane, and

then enter the cell to be developed by the endosomal

network, a membranous compartment that sorts ves-

icles towards their appropriate sub-cellular destina-

tion. The endosomal sorting complex required for

transport (ESCRT) machinery (Simons and Raposo

2009; Baietti et al. 2012) is required for transport into

early endosomes. Subsequent budding of intraluminal

vesicles into the endosomes themselves results in the

maturation of the complex into large MVBs. These

MVBs are ultimately trafficked to lysosomes for

degradation (degradative MVBs) or they fuse with the

plasma membrane of the cell (exocytic MVBs),

releasing their intraluminal vesicles, at this stage

termed exosomes, into the extracellular space.

Biogerontology

123



These latter passages seem to be ESCRT-indepen-

dent and are instead governed by the distribution of the

sphingolipid ceramide and a tetraspannin tertiary

structure within raft-based microdomains on the

MVB (Trajkovic et al. 2008). This process accounts

for the enrichment of ceramide (among other specific

lipids and proteins derived from the MVB membrane)

observed in exosomes, and also for the abundance of

endosome-associated proteins such as Alix and

TSG101 (Théry et al. 2002b). However, the relative

importance of the ESCRT-dependent or -independent

mechanisms is not yet fully elucidated. While the

fusion of MVBs with the plasma membrane respon-

sible for the release of exosomes into the extracellular

space is reportedly controlled by Rab GTPases (Hsu

et al. 2010; Ostrowski et al. 2010), recently an

alternative mechanism for the secretion of Wingless-

related integration site (Wnt)-bound exosomes was

proposed involving the R-SNARE protein YKT6

(Gross et al. 2012).

Microvesicles

The mechanism behind the generation of microvesi-

cles is largely unknown. They represent a heteroge-

neous population of vesicles that are formed by the

outward budding and fission of the cell membrane.

Secretion of shedding vesicles may be controlled by

cholesterol-rich lipid rafts in the plasma membrane

(Del Conde et al. 2005). Moreover, the asymmetric

distribution of proteins and phospholipids is tightly

regulated by aminophospholipid translocases (Zwaal

and Schroit 1997; Bevers et al. 1999; Leventis and

Grinstein 2010). Microvesicle formation is induced by

Fig. 1 The four general pathways of membrane vesicle

biogenesis. 1 Exosomes arise from an endocytic pathway that

begins with the invagination of receptor-coated plasma mem-

brane to form an endosome (endocytic receptors are depicted in

purple). 2 Intraluminal vesicles bud off into the endosome,

passively or actively incorporating bioactive molecules as they

do so. 3 The endosome matures into a MVB, which is

subsequently destined for either degradation within a lysosome,

or 4 exocytosis whereby exosomal EVs are released into the

extracellular milieu. 5 Microvesicles (shedding vesicles) arise

from direct budding and fission of portions of the plasma

membrane, encapsulating a cargo of cytoplasmic proteins

(depicted in yellow) and nucleic acids from the cytosol as they

do so. Variables such as the nature or pathological state of the

parent cell will influence the type and contents of EVs. 6 The

shrinkage and fragmentation of apoptotic cells gives rise to so-

called apoptotic bodies or blebs, 7 while an unknown

mechanism believed to involve transcription of endogenous

retroviruses leads to the formation of RLPs. (Color figure

online)
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translocation of phosphatidylserine to the outer-mem-

brane leaflet (Zwaal and Schroit 1997; Hugel et al.

2005), and the budding process is completed through

contraction of cytoskeletal structures by actin–myosin

interactions (McConnell et al. 2009; Muralidharan-

Chari et al. 2009), regulated in turn by the small

GTPase ADP-ribosylation factor 6 (ARF6) (Mura-

lidharan-Chari et al. 2009). Acid sphingomyelinases

have also been implicated in microvesicle secretion,

notably in glia following adenosine triphosphate

(ATP) stimulation: upon ATP activation of the P2X7

receptor, acid sphingomyelinases relocate to the outer

leaflet of the plasma membrane, immediately preced-

ing microparticle and interleukin-1b (IL-1b) secretion

(Bianco et al. 2005). Inhibition or knockout of acid

sphingomyelinase was found to reduce or block,

respectively, ATP-induced secretion. Interestingly, a

recent study provided evidence for the recruitment of

TSG101, an ESCRT subunit, to the plasma membrane

and into microvesicles (Nabhan et al. 2012).

Thus, the molecular machineries for exosome and

microvesicle biogenesis may share mechanistic

elements.

Retrovirus-like particles (RLPs)

The origin of RLPs is still uncertain. They may arise

from transcription of human endogenous retrovirus

sequences, which represent approximately 8 % of the

human genome but are normally silent. Derepression

of such sequences can occur following cellular stress

(e.g. cytokine stimulation or cancer) (Depil et al. 2002;

Reiche et al. 2010; Golan et al. 2008; Wang-Johanning

et al. 2003; Taruscio and Mantovani 2004). RLPs arise

by directly budding from the plasma membrane with a

mechanism involving the interaction of retroviral

proteins (i.e. Gag) with components of the plasma

membrane (Bieda et al. 2001; Pincetic and Leis 2009)

and the cytoskeleton (Gladnikoff et al. 2009). How-

ever, their biogenesis is thought to be distinct, even if

the size overlaps with exosomes and makes difficult

the differential purification.

Apoptotic bodies

Whereas other EVs are secreted during physiological

cellular processes, apoptotic bodies arise only during

programmed cell death. Like shedding vesicles, a flip-

flopping process during vesicle blebbing results in

high levels of phosphatidylserine on their outer

surface. These translocated phosphatidylserines bind

to Annexin V, which is subsequently recognized by

macrophages for phagocytic clearance (Martinez and

Freyssinet 2001).

Thus, elucidation of the mechanisms that give rise

to the various types of EV (possibly hindered by an

unwieldy and inconsistent designation system) is still

far from complete. Only with a full knowledge of the

molecular machineries required for the EV biogenesis

will researchers be able to thoroughly illuminate the

specific origins of each class of EV, and to resolve

their respective functions.

The functions of EVs

The content of EVs

EVs contain a broad range of molecules, primarily

RNAs, proteins and lipids; according to Vesiclepedia

(Kalra et al. 2012), a manually curated database of EV

contents, 43,731 different proteins, 20,196 different

mRNAs, 2,400 different microRNAs (miRNAs) and

342 different lipids have been described at least once

within EVs (database accessed 30th Jan 2013). Some

of these are found in most EVs, or are specific markers

for a particular EV class, while other vary according to

the organism, organ, cell-type and condition of the cell

of origin (Théry et al. 2009).

Taking the example of exosomes, trafficked pro-

teins include the numerous components of the endo-

somal compartment, such as proteins involved in

membrane transport, tetraspannins (e.g. CD9, CD63,

CD81), MVB proteins (Alix, Tsg101) and Heat Shock

Proteins (e.g. Hsp90).

In addition to proteins, evidence is available that

several classes of RNAs can be profiled within

exosomes. These include mRNAs, miRNAs, viral

RNAs and other non-coding RNAs (ncRNAs) (Belt-

ing and Wittrup 2008; Janowska-Wieczorek et al.

2005; Nguyen et al. 2003; Skog et al. 2008; Valadi

et al. 2007; Zomer et al. 2010), and in some cases

exosomal RNAs have been shown to be intact and

functional by means of in vitro translation (Valadi

et al. 2007). In 2006, Ratajczak et al. demonstrated

that EVs derived from embryonic stem cells are
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enriched in mRNA for several early pluripotent

transcription factors capable of reprogramming

recipient hematopoietic progenitor cells (Ratajczak

et al. 2006). Similarly, EMVs derived from human

endothelial progenitor cells were shown to be

enriched in a specific subset of cellular mRNAs

associated with angiogenic pathways, such as the

PI3K/AKT and eNOS signalling pathways, thus

potentiating them towards triggering an angiogenic

program in target endothelial cells (Deregibus et al.

2007). The functional transfer of miRNAs has been

demonstrated by Montecalvo et al., who showed that

exosomal miR-148a, abundant in exosomes from

bone marrow-derived dendritic cells (DCs), could

downregulate an artificially-induced miR-148a target

sequence in a miR-148-deficient DC2.4 dendritic cell

(DC) line (Montecalvo et al. 2012).

In some instances, the repertoire of proteins and

RNAs contained within EVs matches closely that of

the cell of origin. However, it has also been found that

extracellular signalling is able to modulate the RNA

and protein content of EVs. For example, it was shown

that stress conditions such as hypoxia alter the protein

and RNA composition of exosomes derived from

endothelial cells (de Jong and Verhaar 2012). Levels

of the mRNAs N-myc downstream regulated 1

(NDRG1) and BCL2/adenovirus E1B 19 kDa inter-

acting protein 3 (BNIP3), stress and apoptosis-related

respectively, were significantly upregulated in exo-

somes from hypoxic cells, whereas cold inducible

RNA binding protein (CIRP) mRNA was downregu-

lated. The array of proteins overexpressed in these

same exosomes includes lysyl oxidase homolog 2,

fibronectin and collagen, suggesting a role in cyto-

skeletal and extracellular matrix rearrangement. Fur-

thermore, stress conditions, such as heat stress,

oxidative stress, or hypoxia, induce the exosomal

secretion of heat-shock proteins (HSPs) in several cell

types (Clayton et al. 2005; Eldh et al. 2010; Gastpar

et al. 2005; Gupta and Knowlton 2007; Lancaster and

Febbraio 2005; Taylor et al. 2007; Zhan et al. 2009).

Similarly, it has been shown that the content of

exosomes changes under a diversity of conditions:

reticulocyte activation induces changes in proteolipi-

dic composition (Carayon et al. 2011); viral infection

results in the trafficking of viral miRNAs, such as the

secretion of immunosuppressive miRNAs by Epstein–

Barr virus infected B cells (Pegtel et al. 2010); and in

response to signalling pathway activation, with

proteins such as maspin, cyclophilin A, and phospho-

glycerate kinase 1 upregulated in exosomes in a p53-

dependent manner (Yu et al. 2006). All these

evidences point in the direction that there is a cellular

machinery able to sort specific proteins and/or RNAs

towards exosomes. As such, a recent work by Villar-

roya-Beltri et al. has showed that the heterogeneous

nuclear ribonucleoprotein A2B1 (hnRNPA2B1) spe-

cifically binds to a 4-nucleotide motif present in a

subset of miRNAs and mediates their loading into

exosomes (Villarroya-Beltri and Gutiérrez-Vázquez

2013), reinforcing the idea the exosomal cargo is the

result of an active and regulated process. While

exosomal miRNA-loading was found to be modulated

by changes in hnRNPA2B1 expression, how extrinsic

factors might influence this process is still unknown.

Moreover, hnRNPA2B1 is also implicated in intra-

cellular trafficking and localisation of specific mRNAs

in neurons (Munro et al. 1999) and HIV genomic RNA

(Levesque et al. 2006), however the role, if any, of

hnRNPA2B1 in loading mRNAs into EVs remains to

be elucidated.

Mechanism of EV-mediated cell-to-cell

communication

According to the type of EV and to the biological

context, different mechanisms of interaction between

EVs and target cells have been described, including

ligand–receptor interactions, internalisation and direct

membrane fusion.

DC-derived exosomes containing MHC-peptide

complexes are efficiently recruited by T cell and

mediate T cell inhibition without being internalised or

fusing with the plasma membrane (Nolte-’t Hoen et al.

2009), providing an example of ligand-receptor inter-

actions. Alternatively, other works have shown that

EVs, and in particular exosomes, can also be interna-

lised by target cells via endocytosis and macropino-

cytosis. For example, circulating exosomes are taken

up by DCs, phagocytes of the spleen and Kupffer cells

in the liver via clathrin-dependent endocytosis (Mor-

elli et al. 2004), while exosomes secreted by oligo-

dendrocytes can be internalised by microglia via

macropinocytosis (Fitzner et al. 2011). Also within the

brain, Frühbeis et al. showed that glutamate triggers

the release of exosomes from oligodendrocytes, the

secretion of which is modulated by Ca2? uptake by N-

methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-
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5-methyl-4-isoxazolepropionic acid (AMPA) recep-

tors (Fruhbeis et al. 2013b). Exosomes also play an

important role in the signalling between oligodendro-

cytes and neurons, potentially contributing to the

myelination and long-term axonal survival of the

latter. Similarly, dedifferentiated Schwann cells are

found to secrete exosomes, which are taken up

selectively by dorsal root ganglia axons, enhancing

regeneration in injury models (Lopez-Verrilli et al.

2013). An additional mechanism of EV uptake that has

been described is the direct fusion of the vesicle with

the plasma membrane (Del Conde et al. 2005), while a

recent work by Christianson et al. showed that heparan

sulfate proteoglycans (HSPGs) act as receptors for

cancer cell-derived exosomes and are required for

their internalisation and function in the target cells

(Christianson et al. 2013).

EVs as intercellular mediators of physiology

and pathology

Recent works have also started to shed light on the

function of EVs in physiology and pathology. One of

the earliest insights into EV function dates back to the

1980s, when Johnstone and colleagues described EV

secretion by sheep reticulocytes, suggesting that it

could be a mechanism of protein clearance during

reticulocyte maturation (Johnstone et al. 1987). More

recently, most of the research efforts on EV function

shifted towards immunology and immunotherapy. In a

pioneering work Raposo et al. have shown that B cell-

derived exosomes are capable of modulating the

immune response by spreading MHC-antigen com-

plexes (Raposo et al. 1996). Subsequently, it was

shown that the injection of antigen-bearing exosomes

derived from DCs induces the activation of antigen-

specific CD4? T cells in vivo, causing an amplification

of the primary immune response (Théry et al. 2002a).

Additionally, the EV-mediated transfer of MHC-

peptide complexes between DCs and from DCs to T

cells enhances T cell activation in vitro (Nolte-’t Hoen

et al. 2009; Arnold and Mannie 1999; Bedford et al.

1999; Patel et al. 1999). On the other hand, there are

also several works reporting that EVs—and in partic-

ular tumour derived exosomes—have an immunosup-

pressive effect in vitro on T cells and NK cells, and

promote the induction of T regulatory cells (Clayton

et al. 2007; Andreola et al. 2002; Huber et al. 2005;

Szajnik et al. 2010; Zeelenberg et al. 2008; Valenti

et al. 2006; Liu et al. 2006). It has been shown that

bioactive Fas ligand (FasL) and TNF-related apoptosis

inducing ligand (TRAIL) are expressed in tumour-

derived exosomes and induce apoptosis in activated

tumour-specific T cells (Iero et al. 2007), while NK

cells lose their cytolytic potential through an exosome-

mediated inhibition of perforin release (Liu et al.

2006). Furthermore, tumour-derived exosomes are

known to impair the capacity of CD14? monocytes to

differentiate into functional DCs, leading to an

abundance of CD14? cells with low levels of

expressed human leukocyte antigen-DR (HLA-DR)

that serve as myeloid suppressor cells (Valenti et al.

2006). These data support the idea that tumour-derived

exosomes might induce immune tolerance and con-

tribute to tumour growth.

Similarly, others have described that several other

cell-types also secrete exosomes carrying immune-

suppressive agents. For example, exosomes derived

from the placenta carry immunosuppressive FasL and

UL-16 binding proteins that modulate the activity of

maternal cytotoxic T and NK cell, respectively,

inducing tolerance toward the foetus (Hedlund et al.

2009; Taylor et al. 2006). Given the amount of

evidence supporting both the immune-stimulatory and

immune-suppressive role of EVs, their effect is

probably very much dependent on the cell of origin

(and therefore the content of the EV), on the state of

the target cell, and on the biological context in which

the interaction between EVs and target cells takes

place.

In addition to their immune-modulatory effect, EVs

were also shown to be involved in cytokine activity.

For example, exosome-like vesicles mediate the

release of full-length TNF receptor 1 (Hawari et al.

2004) and are considered a major mechanism through

which murine bone marrow derived macrophages

(BMDM) secrete Interleukin-1b (IL-1b) (Qu et al.

2007). A similar mechanism has been observed in

microglia following stimulation by astrocyte-derived

ATP (Bianco et al. 2005). Additionally, EVs mediate

the transfer of the chemokine receptor CCR5 from

peripheral blood mononuclear cells to cells that do not

express it. The efficient infection of cells by the human

immunodeficiency virus-1 (HIV-1) requires the pre-

sence of CD4 and a specific chemokine co-receptor, a

role served by CCR5 in macrophage-tropic (M-tropic)

HIV-1 strains. M-tropic HIV-1 is known to infect

multiple cell types, however the expression of CCR5
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by target endothelial cells, astrocytes and renal cells is

still debated, raising the question as to how such cells

become infected. Mack et al. report a potential

explanatory mechanism whereby functional CCR5 is

transferred via EVs to endothelial cells that do not

normally express CCR5 (Mack et al. 2000).

In the last few years it was also reported that EVs

can mediate the spread of infections. Wiley and

Gummuluru have shown that HIV-1 particles can be

endocytosed by DCs and released within exosomes,

which in turn can spread the infection to T cells with

an efficiency 10-fold higher than cell-free viral

particles (Wiley and Gummuluru 2006). Similarly,

other works have shown that prion-infected cells

release the prion protein (PrPC) and its abnormally

folded version scrapie (PrPSc) inside exosomes, which

in turn are able to spread the infection to other cells

(Fevrier et al. 2004). In addition to the direct spreading

of infections there’s also evidence that some patho-

gens can exploit EVs to modulate their host. For

example, Epstein–Barr Virus (EBV)-infected B cells

release exosomes that contain viral microRNAs,

which in turn are transferred to non-infected cells of

the immune system (Pegtel et al. 2010), making this a

mechanism by which viruses could potentially mod-

ulate the immune response of the infected organism.

As well as being exploited for the spreading of viral

infections, EVs were also shown to mediate the

intercellular transfer of anti-viral activity. In fact, Li

et al. recently showed that IFN-a stimulation of

macrophages and liver sinusoidal endothelial cells

induces the secretion of exosomes that block Hepatitis

B Virus (HBV) replication in infected cells (Li et al.

2013a). This observation suggests the existence of a

mechanism that allows uninfected cells to overcome

the HBV-mediated blockage of IFN activity in

infected cells.

In addition to their role in infections and immunity,

EVs can also mediate the acquisition of new functional

properties by recipient cells, such as migratory,

adhesive or metastatic abilities. For example, in

gliomas EVs mediate the transfer of an oncogenic,

truncated form of the epidermal growth factor receptor

(EGFR) to cells that do not express it, and thus they

promote the activation of transforming signalling

pathways inducing morphological transformation and

promoting growth (Al-Nedawi et al. 2008). Following

the discovery that tumour-derived EVs contain onco-

genes, other groups have investigated the possibility of

using EVs as biomarkers. For example, Skog et al. have

found that EVs purified from the serum of glioblastoma

patients contain the mRNA for the oncogenic form of

EGFR (EGFRvIII) highlighting their potential as

diagnostic markers (Skog et al. 2008). In addition to

glioblastoma, the diagnostic potential of exosomes is

under investigation also for prostate cancer, with

various studies having identified altered levels of

specific miRNAs in exosomes derived from the serum

of prostate cancer patients (Hessvik et al. 2013; Brase

et al. 2011; Lodes et al. 2009; Mitchell et al. 2008;

Moltzahn et al. 2011). Study into the pathological

role of EV-mediated miRNA transfer, and their

potential application as disease biomarkers or even

therapeutic agents, is a burgeoning field of interest and

many potential targets have been identified (see

Table 1).

In parallel, numerous works have identified distinct

proteins, mRNAs and lipids in exosomes purified from

blood or urine of prostate cancer patients, offering

additional possibilities for the use of exosomes as

disease biomarkers or indicators of treatment efficacy

(Soekmadji et al. 2013).

EVs in the brain

The physiological processes of the brain require a

highly complex array of intercellular communications

between a diversity of cell types over variable

distances and time-scales. Mechanisms implicated in

neural communications networks include the devel-

opment of gap junctions, cell adhesion processes, and

the secretion of bioactive signalling molecules, neu-

rotransmitters and growth factors. In recent years,

mounting evidence has implicated EVs as an addi-

tional route of communication within the brain (and,

by extension, the broader CNS) (Sharma et al. 2013;

Lai and Breakefield 2012; Von Bartheld and Altick

2011). EV secretion has been observed in nearly all

cell types that constitute the brain: neurons (Faure

et al. 2006; Putz et al. 2008; Schiera et al. 2007),

astrocytes (Guescini et al. 2010; Taylor et al. 2007),

Schwann cells (Lopez-Verrilli et al. 2013; Lopez-

Verrilli and Court 2012), neural stem/progenitor cells

(Huttner et al. 2008; Marzesco et al. 2005), microglia

(Bianco et al. 2005; Bianco et al. 2009; Potolicchio

et al. 2005; Tamboli et al. 2010), oligodendrocytes

(Fitzner et al. 2011; Hsu et al. 2010; Trajkovic et al.

2008) and endothelial cells (Simak et al. 2006; Jung
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et al. 2009) can communicate with each other within

the brain and, by extension, the broader CNS.

EVs released from neurons have been confirmed as

being involved in synaptic function (Faure et al. 2006),

with their release being stimulated by enhanced

glutamatergic activity and resulting in increased

spontaneous neuronal activity with the presence of

glutamate receptor 2 subunits in EVs (Lachenal et al.

2011). Furthermore, EVs have been shown to regulate

the synaptic transfer of Wnt morphogens at the

neuromuscular junction (Korkut et al. 2009), hinting

at a potential role in broader Wnt-mediated develop-

mental processes. Additionally, EVs are implicated in

various mechanisms within the specialised immune

system of the brain (Cossetti et al. 2012). Microglia,

prime components of the intrinsic brain immune

response, secrete EVs exhibiting MHC class II mol-

ecules, the expression of which is upregulated upon

stimulation with interferon (IFN)-c (Potolicchio et al.

2005). Thus, they may reflect the non-professional

antigen-presenting activity of their progenitor cells.

Moreover, EVs of microglial origin are found to

propagate inflammatory signals in vitro and in vivo,

with cerebrospinal fluid (CSF) levels of myeloid EVs

exhibiting a positive correlation with neurodegenera-

tive disease activity. Mice in which EV secretion had

been inhibited showed protection against experimen-

tal encephalomyelitis, an animal model of multiple

sclerosis (MS) (Verderio et al. 2012), and significantly

elevated levels of neurotoxic myeloid EVs have been

detected in the CSF of Alzheimer’s disease (AD)

patients (Joshi et al. 2014). These observations

highlight the role of microglial EVs as not only

markers of neuroinflammation, but also putative

therapeutic targets for the treatment of neurodegener-

ative disease. Like microglial EVs, endothelial cell-

derived EV levels are particularly responsive to the

immune state of the CNS, with increased secretion

under inflammatory conditions making them putative

biomarkers of cerebrovascular disorders and neuroin-

flammatory diseases such as MS (Minagar et al. 2001).

Levels of circulating endothelial EVs are being

correlated with the severity and prognostic outlook

of disease (Simak et al. 2006; Jung et al. 2009), and the

EVs themselves are being attributed possible roles in

the propagation of inflammation (Chironi et al. 2009;

Morel et al. 2011) by stimulating the trans-endothelial

migration of monocytes (Jy et al. 2004). Such

migration is believed to be facilitated by the binding

to and activation of monocytes via a specific pheno-

typic subset of CD54? EVs.

Nevertheless, EVs are also believed to serve a

protective role with respect to brain injury and

regeneration. Trophic support for neurons by oligo-

dendrocytes has been ascribed to exosome-mediated

transfer of genuine myelin proteins and stress-protec-

tive proteins (Kramer-Albers et al. 2007). Conversely,

the neuron-modulated release of auto inhibitory

oligodendrocyte-derived exosomes have also been

implicated in the inhibition of myelin membrane

sheath formation (Bakhti et al. 2011), The cargoes

carried by oligodendroglial exosomes, including

metabolites, protective proteins, glycolytic enzymes,

mRNA and miRNA may serve to maintain axonal

integrity (Fruhbeis et al. 2013a). Neuron-derived

exosomes are also attributed a role in the sequestration

of unwanted Nedd4-family metal cation-transporting

proteins during times of stress (Putz et al. 2008), while

endothelial cell and astrocyte-derived microvesicles

have been found to be enriched in nucleoside triphos-

phate diphosphohydrolases, imbuing them with the

capacity to suppress toxic levels of ATP after an

ischemia-related breach of the blood brain barrier

(Ceruti et al. 2011). EVs are also found to be a means

of degradation of toxic b-amyloid (Ab) protein, the

accumulation of which is implicated as a causative

factor in AD, when taken up by microglia; however,

pathologic accumulation of Ab neurons restarts when

that clearance pathway is overwhelmed (Yuyama et al.

2012) and EVs are considered to be putative vehicles

by which toxic protein aggregates are spread in several

neurodegenerative diseases (see below).

EVs in biogerontology

Senescence

With EVs having been attributed a role in intercellular

communication, it stands to reason that they too play a

significant part in the propagation of senescence/

aging-related processes. Indeed, while the study of the

role of EVs in aging (at the cellular or organismal

level) is still in its infancy, there is evidence that

senescent cells do undergo specific changes in EV

trafficking, particularly with regards to exosome

trafficking.

Cellular senescence, induced by triggers such as

shortening of the telomeres, commonly operates via
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tumour-suppression pathways, notably the p53 path-

way. Upon activation, p53 up-regulates secreted

factors such as insulin-like growth factor-binding

protein 3 (IGFBP-3, a growth factor regulator), maspin

(Yu et al. 2006) and plasminogen activator inhibitor 1

(PAI-1, inhibitors of protease activity in the extracel-

lular matrix), and TSP (an antiangiogenic), all mod-

ulators of the microenvironment. Moreover, p53 is

known to regulate the transcription of several genes

involved in the biogenesis and secretion of exosomes,

enhancing the extracellular release of exosomes upon

senescence-correlated activation (Yu et al. 2006; Yu

et al. 2009). p53 is reported to up-regulate the

expression of caveolin-1 and charged MVP protein

4C (CHMP4C), two genes involved in the regulation

of the endosomal compartment (Yu et al. 2009; Feng

2010). Caveolin-1, the primary component of caveo-

lae plasma membranes, facilitates endocytosis and

internalisation of surface receptors such as EGFR (Yu

et al. 2009), while CHMP4C plays a role in MVB

formation as a part of the ESCRT-III complex

(Saksena et al. 2007). Similarly, p53 stimulates the

expression of genes ascribed roles in vesicle secretion,

notably tumour suppressor-activated pathway 6

(TSAP6) which has been shown to be integral to

competent exosomes release (Lespagnol et al. 2008).

Thus, senescence-associated chronic activation of the

p53 tumour suppression pathway and the associated

up-regulation of an array of auto-, para- and endo-

crine-acting secreted factors, including exosomes, is

implicated in the propagation of the aging phenotype

from the cellular to organismal levels. Unfortunately,

the contents of senescence-evolved exosomes have yet

to be characterised to any significant extent, and

therefore the specifics of their function in influencing

recipient cells during aging in vivo remains ambigu-

ous. Nevertheless, exosomes have been associated

with a number of age-related pathologies, both as

diagnostic biomarkers and putative propagators of

disease.

Chief amongst these aging-related disorders is

cancer. An accumulation of mutations (and dimin-

ished genetic repair efficacy) and senescence-induced

pro-oncogenic tissue changes during aging results in

an exponential increase in the occurrence of cancer in

older organisms (Krtolica and Campisi 2002). EVs

and their contents are established as biomarkers of a

number of cancer types (Vlassov et al. 2012; Principe

et al. 2013; Gabriel et al. 2013; Lau et al. 2013;

Wittmann and Jäck 2010), as well as being putative

agents of tumour cell proliferation and metastasis

(Azmi et al. 2013; Simona et al. 2013; Shin-ichiro

et al. 2013). Tumour-derived EVs are known to traffic

a variety of proteins, mRNAs, miRNAs and metabo-

lites that can promote an oncogenic niche, obstructing

immune responses, promoting angiogenesis, and

yielding an environment more conducive to tumour

cell mobilisation. This age-related increase in cancer

risk is manifested largely as an increased incidence of

epithelial carcinomas (DePinho 2000), with lung,

colon, breast and prostate cancers being responsible

for the highest cancer mortalities in the elderly

(Cancer Research UK: http://www.cancerresearchuk.

org/cancer-info/cancerstats/mortality/age/). However,

given the brain-related focus of this review we will

focus upon glioma, the most common adult-onset

brain tumour (Stoll et al. 2013).

Brain cancer

Glioma increases in incidence with age and exosomes

have been implicated in its malignancy. Microvesi-

cles secreted by glioma cells are characteristically

enriched in tumour-characteristic miRNAs, and pro-

teins and mRNAs capable of inducing pro-angiogenic

phentotypic modulation in target brain endothelial

cells and stimulating proliferation in an autocrine

manner (Skog et al. 2008). Glioma-derived exosomes

were found to contain angiogenin, fibroblast growth

factor (FGF)-a, IL-6, IL-8, issue inhibitors of

metalloproteinases (TIMP)-1, TIMP-2 and vascular

endothelial growth factor (VEGF), angiogenic pro-

teins that are envisioned to exert their biological

function on recipient endothelial cells, In addition to

angiogenesis, ontology analyses reveal high levels of

expression within these glioma EVs of mRNAs

involved in cell migration, cell proliferation, immune

response and histone modification, all potential

avenues through which tumours might modulate their

stroma and facilitate growth. As described earlier,

these trafficked mRNAs also include the oncogenic

variant of EGFR, EGFRvIII, a characteristic bio-

marker of some clinically distinct glioblastoma

subtypes (Pelloski et al. 2007). Glioma-derived EVs

are found to promote oncogenic transformation of

neighbouring cells via trafficked EGFRvIII which in

turn enhanced angiogenesis through induced VEGF

expression and a resultant autocrine stimulation of
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VEGF receptor 2 (Al-Nedawi et al. 2008), These EVs

were are also found shuttle the protein cross-linking

enzyme, tissue transglutaminase (tTG), which

imbued non-transformed fibroblasts and epithelial

cells with cancer-like properties including anchor-

age-dependent growth and enhanced survival capa-

bility (Antonyak et al. 2011). Exosome secretion and

tumour aggressiveness are once again seen to

increase under hypoxic conditions (Svensson et al.

2011), with an enrichment in exosomal MMP, IL-8,

platelet-derived growth factors, caveolin-1 and lysyl

oxidase (the increased expression of which have been

associated with cancer progression and poor progno-

sis) relative to normoxic secretions (Kucharzewska

et al. 2013). Thus, hypoxic conditions appear to drive

cancer cells to modulate their microenvironments via

microvesicle secretions, yielding a state more con-

ducive to tumour growth and metastasis (Park et al.

2010).

Neurodegenerative disease

Exosomes are implicated in many facets of neuron-to-

neuron, neuron-to-glia, glia-to-glia, and glia-to-neu-

ron communication within the CNS (Fruhbeis et al.

2013b), but from a pathophysiological standpoint they

are best characterised as conveyors of inflammatory

signals and vehicles by which toxic protein aggregates

(or their precursors) are propagated (Schneider and

Simons 2013; Vella et al. 2008; Kalani et al. 2013).

Cellular and molecular changes that occur during the

aging process, such as the accumulation of oxidative

damage and diminished adaptive immunity, make the

elderly more susceptible to neurodegenerative disease,

while impaired neurogenesis limits self-repair (Hung

et al. 2010).

AD is the most common form of dementia (Quer-

furth and LaFerla 2010), and is associated with the

accumulation of Ab peptides into potentially neuro-

toxic extracellular plaques. The earliest signs that

exosomes might be involved in this process came from

observations in the 1970s that MVBs were more

abundant and larger in cortical dendrites obtained

from AD patients (Paula-Barbosa et al. 1978). The Ab
peptide undergoes extensive processing and sub-

cellular trafficking, with the amyloidogenic Ab42

fragment ultimately accumulating in MVBs (Takah-

ashi et al. 2002) and subsequently being secreted into

extracellular space via exosomes (Rajendran et al.

2006). Ab, its parent protein amyloid precursor protein

(APP), and b- and c-secretases (proteases responsible

for cleavage of APP into the Ab peptide) have all been

found enriched in exosomes obtained from AD

patients, hinting at the possibility that processing of

APP into pathogenic forms might be occurring in the

exosomal pathway (Vella et al. 2008). Furthermore,

exosomal proteins such as Alix and flotillin-1 have

been found in association with plaques in the brains of

AD patients, implying a potential role of exosomes in

the formation of these deposits (Rajendran et al. 2006).

Several reports describe the potential role of EV-

associated lipids in shifting the equilibrium between

monomeric Ab units, soluble Ab oligomers, and

insoluble Ab aggregates. Microglia-derived EVs,

levels of which are elevated in AD patients, were

found to promote the formation of the neurotoxic,

soluble oligomeric form of Ab from insoluble aggre-

gates (Joshi et al. 2014), further implicating EVs in

neurodegeneration. On the other hand, neuron- and

astrocyte-derived exosomes have been demonstrated

to promote aggregation of monomeric Ab into insol-

uble plaques, suggesting that the parent cell-dependent

lipid composition may influence an EV’s effect on Ab
aggregation (Dinkins et al. 2014; Yuyama et al. 2008).

Indeed, exosomes may present a clearance mechanism

by which potentially pathogenic deposits are shuttled

to microglia for degradation (Yuyama et al. 2012) or

degraded by EV-shuttled proteases such as the insulin

degrading enzyme (Tamboli et al. 2010). It is also

noteworthy that microvesicles isolated from the cere-

brospinal fluid of AD patients exhibit some 60

miRNAs that are differentially expressed relative to

healthy controls, however the significance of these

specific markers has yet to be established (Cogswell

et al. 2008). Hyperphosphorylation of the tau micro-

tubule-associated protein results in the disruption of

tau’s normal axonal transport function as well as the

formation of neurofibrillary tangles and toxic species

of soluble tau, and these effects have been associated

with a number of neurodegenerative diseases, includ-

ing AD. Indeed, secretion and interneuronal transfer of

toxic tau species is believed to play a role in the spread

of AD lesions, and selectively phosphorylated tau has

been shown to be actively secreted via exosomes into

the CSF during early stages of the disease, not just as

refuse from dying neurons (Saman et al. 2012).

Parkinson’s disease (PD), the second most common

neurodegenerative disease after AD, is also
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characterised by the accumulation of protein aggre-

gates (Lees et al. 2009; Russo et al. 2012). The

pathological progression of the disease, selective

degeneration of dopaminergic neurons in the substan-

tia nigra pars compact, is accompanied by the

formation of Lewy bodies, deposits primarily consist-

ing of fibrillar a-synuclein (a-Syn), in surviving

neurons (Danzer et al. 2012). While the exact mech-

anism of PD pathogenesis is yet to be elucidated, toxic

a-Syn aggregates are implicated and intercellular

transport of a-Syn from overexpressing neurons to

recipient neuronal cells has been observed (Russo

et al. 2012; Danzer et al. 2012). Excess a-Syn secreted

by neurons can be phagocytised by astrocytes and

microglia in a putative waste clearance mechanism

(Lee et al. 2010; Lee et al. 2008), however excessive

accumulation in these recipient cells can lead to the

formation of inclusions and trigger an inflammatory

response (Vekrellis et al. 2011; Lee et al. 2010;

Halliday and Stevens 2011). a-Syn can be transferred

between neurons, result in aggregation within the

recipient neurons, inducing cell death (Desplats et al.

2009; Hansen et al. 2011; Emmanouilidou et al. 2010;

Schneider and Simons 2013). Exosomes are known to

play a role in this intracellular transfer and propagation

of a-Syn (Alvarez-Erviti et al. 2011a; Emmanouilidou

et al. 2010; Schneider and Simons 2013) in an active,

energy-dependent manner (Bellingham et al. 2012b;

Aguzzi and Rajendran 2009). Moreover, it is reported

that a-Syn oligomers that are associated with exo-

somes are more likely to be taken up by recipient cells

and are more toxic than free a-Syn (Danzer et al.

2012). PD has been linked to mutations in a number of

genes involved in the endosomal-lysosomal pathway,

thus it might be speculated that resultant alterations to

vesicle secretion and trafficking mechanisms might

play a role in disease progression (Russo et al. 2012;

Schneider and Simons 2013). One such example is

leucine-rich receptor kinase 2 (LRRK2), which is

involved in exosome secretion (Alegre-Abarrategui

et al. 2009; Dihanich and Manzoni 2011; Shin et al.

2008; Piccoli et al. 2011); mutations to this protein

yield abnormally large MVBs which may potentially

release large numbers of exosomes bearing a-Syn

(Alegre-Abarrategui et al. 2009; Russo et al. 2012).

Like AD and PD, prion disease is associated with

misfolded proteins and is more prevalent in the

elderly. Indeed, the neuropathology implicated in the

various types of prion disease may coexist with the

protein aggregates described above (Kovacs and

Budka 2002). Prion disease is a fatal, transmissible

neurodegenerative disease that involves the conver-

sion of the prion protein PrPC into an abnormal,

misfolded and protease-resistant, pathogenic isoform,

PrPSc (Brown and Mastrianni 2010). The infectious

form of the disease begins in the periphery before

spreading to the brain via a yet unknown mechanism

(Fevrier et al. 2004). Once acquired, the toxic form of

the protein catalyses conversion of the non-toxic form

to the pathogenic state, however the means of

dissemination of the disease was, until recently, a

mystery since no plausible vector by which PrPSc

could spread to uninfected tissue could be identified

(Vella et al. 2007). Experiments demonstrating that

the culture medium of infected cells was itself

infectious hinted at an extracellular route of transmis-

sion, with subsequent characterisations revealing

exosomes to be the likely carriers of the toxic prion

(Vella et al. 2007; Alais et al. 2008). PrPSc-laden

exosomes from infected cells were found to be of

greater density than those from healthy cells, contain-

ing only the PrPC form, due to the formation of toxic

protein aggregates (Vella et al. 2007). Moreover,

exosomes from infected neuronal cells have been

described as being more spherical in shape, but diverse

in size and internal structure (Coleman et al. 2012),

while infected platelets are described as releasing

PrPSc via both microvesicles and exosomes (Robert-

son et al. 2006). In the case of the neuronal cell line,

prion packaging into exosomes is believed to involve

N-terminal modifications to a distinct subtype of PrP

glycoforms (Vella et al. 2007).

Therapeutic applications of EVs

Although the significant and broad role played by EVs

has only recently come to receive due attention, and is

still far from being thoroughly elucidated, the thera-

peutic potential of these extracellular delivery vectors

is already under intense investigation. Numerous

studies have demonstrated the in vivo and in vitro

loading of EVs with a diversity of drugs, enzymes,

genes and RNAi agents and, furthermore, seen their

subsequent application as putative therapeutic vectors

in a variety of disease models. Therapeutic applica-

tions of EVs are perhaps most promising within the

CNS, where conventional drugs have traditionally

Biogerontology

123



exhibited low efficacy due to a number of biological

barriers to their delivery. The tissue/cell specificity

and low immunogenicity of biogenic EVs, coupled

with an appropriate cargo of bioactive molecules (be

they naturally derived or artificially loaded), makes for

a potent therapeutic vector in the treatment of

neurodegenerative disease and brain cancers for which

age is a prominent risk factor.

Therapeutic potential of EVs in brian repair

Delivery of therapeutic agents into the brain is a

challenging task due to the major obstacle of the

blood–brain barrier (BBB). Numerous studies have

shown the advantages of biological EVs for brain

repair (Lakhal and Wood 2011; Zhuang et al. 2011;

Alvarez-Erviti et al. 2011b), since they possess the

ability to cross BBB, as well as ability to deliver

therapeutic cargoes, inherent targeting ability to

certain cell types, and immune tolerance. EVs often

manifest selective cell homing that, like many key EV

features, is often specifically derived from the parent

cell. Furthermore, they possess effective protective

ability for bioactive cargoes including mRNA, siRNA,

miRNA, proteins and drugs, thus making them

potential natural vehicles in drug delivery system.

Furthermore, advances in genetic engineering allow

for the functionalization of otherwise naturally occur-

ring EVs to enhance e.g. their targeting capability or to

bolster their therapeutic cargoes. These properties lend

themselves to the development of EV-based cell free

therapies for brain diseases.

Naturally occurring EVs have innate therapeutic

potential due to their diversified bioactive cargoes,

thus making them novel candidates as cell-free

therapy. Yu et al. describe the isolation of a sub-class

of DC-derived exosomes expressing TGF-b1 in their

membranes which purportedly exert a potent immu-

nosuppressive effect capable of inhibiting the devel-

opment and progression of experimental autoimmune

encephalomyelitis (EAE) in recipient mice when

delivered systemically (Yu et al. 2013). The impor-

tance of the host cell type can be seen in the

experiments described by Hajrasouliha et al. wherein

exosomes obtained from retinal astroglial cells

(RACs) were able to suppress retinal vessel leakage

and inhibit choroidal neovascularisation, whereas

exosomes from retinal pigmental epithelium were

not (Hajrasouliha et al. 2013). The anti-angiogenic

properties of these RAC-derived EVs were attributed

to the exclusive presence of endogenous angiogenesis

inhibitors in those exosomes.

There is considerable interest in EV-based RNA-

interference (RNAi)-based therapy, with EVs repre-

senting an ideal platform for RNA delivery, opening a

new route for gene modulation. Recent reports have

demonstrated that systemic administration of exo-

somes derived from mesenchymal stem cells (MSCs)

promoted neurovascular remodelling and functional

recovery after stroke in rats (Xin et al. 2013a). The

authors’ initial hypothesis, that the MSC-derived

exosomes were exerting this neurological recovery

via transfer of miR-133b, known to enhance neurite

remodelling and be at high levels in MSC-derived

exosomes (Xin et al. 2012), was supported by follow-

up experiments (Xin et al. 2013b). Exosomes were

found to transfer miR-133b to neurons and astrocytes,

and cause a knockdown in the expression of connec-

tive tissue growth factor and ras homolog family

member A at the ischemic boundary zone in rat stroke

models, enhancing functional recovery. The applica-

tion of EVs as drug delivery vehicles is another focus

of developing EVs as therapeutics. For instance, Sun

et al. were the first to devote their efforts to load

curcumin, a polyphenol anti-inflammatory compound,

into EVs derived from EL-4 lymphoma lines, with this

exosomal curcumin affording protection against LPS-

induced inflammation in mice through delivery to

activated myeloid cells (Sun et al. 2010). Remarkably,

the same group reported intranasal administration of

exosomal curcumin or exosomal JSI-124, a signal

transducer and activator of transcription 3 (Stat3)

inhibitor, could across BBB and resulted in suppres-

sion of a range of inflammation-driven disease models,

including LPS-induced inflammation, myelin oligo-

dendrocyte glycoprotein-induced EAE and GL26

glioma (Zhuang et al. 2011).

Despite the promising properties of naturally

occurring EVs, there is considerable interest in

improving their therapeutic utility through genetic

engineering, with the goals of improving specificity or

enrichment in the bioactive cargo(es) of interest.

Genetic engineering of EV producer cells or direct

modification of the EVs themselves, with insertion of

therapeutic agents into the lipid layer or loading into

their aqueous core, are proposed as means to modulate

the specificity and activity of EVs as targeted delivery

vehicles (Lai et al. 2013).
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The inspiration for the targeted delivery of EVs was

perhaps first envisioned in EV-mediated immunother-

apy (Trumpfheller et al. 2012), particularly for cancer

vaccines, EVs have been investigated to pulse DCs

with antigens to activate an immune response against

tumor cells (Tan et al. 2010). Work by Viaud et al.

showed that DC-derived highly immunogenic, clinical

grade EVs expressing CD40, CD80, CD86, and

ICAM-1 on their membranes could prime CD8? T

cells in a peptide-dependent manner (Viaud et al.

2011). By utilizing the ligand-receptor interactions,

studies have demonstrated EVs that express ICAM-1

can bind DCs and T cells, while EVs from B cells that

carried selected galectins can target T cells (Théry

et al. 2009). These encouraging findings laid the

foundation for further steps into targeting EVs to brain

tumours (Lai and Breakefield 2012) and CNS inflam-

matory disease. The combinatorial EV-based therapy

(El-Andaloussi et al. 2013) that couples DC-derived

EVs presenting tumour antigens to T cells with

tumour-targeted EVs loaded with RNAi effectors is

also expected to be a potent therapeutic approach to

CNS diseases.

The first proof-of-concept for applying modified

EVs in targeted drug delivery for the brain was from the

work done by Alvarez et al., in which the host DCs

were engineered to express Lamp2b fused to the

neuron-specific peptide rabies virus glycoprotein

(RVG), imbuing the daughter EVs with BBB-traversal

capabilities and facilitating their subsequent uptake

into neurons, microglia and oligodendrocytes. These

engineered EVs were able to deliver siRNA into the

mouse brain where they achieved strong knockdown of

beta-site APP cleaving enzyme 1 (BACE1) mRNA and

protein, a therapeutic target for AD (Alvarez-Erviti

et al. 2011b). This proposed method, along with

identification of targeting peptides selectively binding

to the cell type or tissues of interest in the brain, is a

significant step towards realising the therapeutic

potential of EVs, particularly as RNAi-delivery plat-

forms (El-Andaloussi et al. 2012). In addition, strate-

gies utilised in the modification of artificial

nanoparticles, such as utilizing monoclonal antibodies

complementary to receptors that are naturally

expressed on the BBB (Roberts et al. 1993) or inflamed

tissues, could be adopted for EV modification.

Despite the modification of EVs for targeted drug

delivery, the target loading of cargoes into EVs is also

addressed as an important issue requiring further

development. For the loading of nucleic acids, several

strategies including transfection-based approaches

and electroporation have been utilized. The basic idea

of transfection method is to construct suitable expres-

sion vectors that can be transfected into donor cells

and finally induce overexpression of desired short

RNAs enriched into EVs (Kooijmans et al. 2013).

Several studies have evidenced successful loading of

siRNAs and miRNAs into EVs with constructed

vectors as well as utilizing transfection reagents

(Olson et al. 2012; Zhang et al. 2010b; Kosaka et al.

2010; Ohno et al. 2013). For instance, in a rat model of

primary brain tumour, exosomes derived from MSCs

engineered to over-express anti-tumour miR-146b

significantly reduced glioma xenograft growth upon

intra-tumour injection (Katakowski et al. 2013a).

Interestingly, synthetic spherical nucleic (SNAs) acids

endocytosed into PC-3 prostate cancer cells were

naturally sorted into exosomes to a small degree

(\1 %), while transmission electron microscopy

results indicated SNAs were internalized into exo-

somes as well as bound to the membrane surface

(Alhasan et al. 2014). Nevertheless, questions remain-

ing in the transfection-based approach revolve around

not only the level of desired small RNAs enriched in

EVs independent of sequences (Batagov et al. 2011),

but also the changing encapsulation process and

behaviour of EVs (Kooijmans et al. 2013). As for

the electroporation method, loading efficiency may

vary among sequences of small RNAs (Kooijmans

et al. 2013). Wahlgren et al. showed up to 85.2 % of

EVs loaded with exogenous siRNA successfully

induced gene knockdown in monocytes or lympho-

cytes (Wahlgren et al. 2012). Alvarez-Erviti et al.

demonstrated that RVG-exosomes loaded with

approximately 25 % of the electroporated siRNA

induced up to 60 % mRNA and protein knockdown,

predominantly in the midbrain, cortex and striatum

(Alvarez-Erviti et al. 2011b). However, there is a

debate about the efficiency of electroporation. Kooij-

mans et al. argued that electroporation is far less

efficient than previously described since electropora-

tion of EVs with siRNA is accompanied by extensive

siRNA aggregate formation, which may cause over-

estimation of the amount of siRNA actually loaded

into EVs (Kooijmans et al. 2013). Therefore, there is

an urgent need to develop efficient approaches to load

exogenous cargoes into EVs. Such efforts could be

devoted to synthesizing EV-targeted vectors, as well
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as screening RNA targeting to EVs, since multiple

motifs were found specifically enriched in secreted

RNAs (Batagov et al. 2011) and a ‘‘zip code-like’’

sequence may direct mRNAs targeting into EVs

(Bolukbasi et al. 2012).

Nanotherapeutic synthetic analogues of EVs

The exploitation of natural EVs and their biogenic

cargoes as therapeutic agents is a very promising

avenue of cellular medicine research. As potent

vehicles by which to deliver potentially therapeutic

miRNAs and proteins to dysfunctional cells, micro-

vesicles may prove invaluable in treating a wide

variety of diseases and disorders, including those that

are age-associated. Advances in synthetic biology and

genetic engineering will further progress our ability to

evolve and develop these therapeutic delivery plat-

forms with tailored contents and targeting, but current

applications of natural exosomes are limited (Kop-

pers-Lalic et al. 2013; Kosaka et al. 2013; Lai et al.

2013; Munoz et al. 2013; Tan et al. 2013; van

Dommelen et al. 2012; Kalani et al. 2013). A number

of factors need to be carefully considered in the

application of naturally occurring EVs. The compo-

sition and contents of the vesicles can be complex and

difficult to characterise which may confound predic-

tions of in vivo activity; the abundant and diverse

bioactive contents of vesicles may exert a plethora of

effects, intended and unintended. Furthermore, obtain-

ing pure microvesicle preparations can be tedious, and

scalable production of vesicle from mammalian cells

is problematic due to low yields (van Dommelen et al.

2012; Lakhal and Wood 2011). Thus, while advances

continue in modulating the expression, composition

and contents of natural microvesicles towards more

efficacious therapeutic activity, parallel efforts are

being made in the development of biomimetic or

synthetic drug-delivery platforms (Kooijmans et al.

2012).

There have been a number of novel approaches to

generating artificial vesicles that are nonetheless cell-

derived, including stem cell nanoghosts and nanove-

sicles (Jo et al. 2014; Toledano Furman et al. 2013;

Jang et al. 2013). However, the recent emergence of

nanomedicine, the utilisation of cell- and molecule-

specific interactions for medicinal applications, has

led to the adoption of a plethora of diverse technol-

ogies and synthetic constructs as putative platforms

for the cellular delivery of therapeutic and diagnostic

agents (Tennyson and Clemens 2012; Duncan and

Gaspar 2011; Devadasu et al. 2013; Ganta et al. 2008;

Collet et al. 2013; Gao et al. 2013). The makeup of

these nanovehicles spans a broad range of physical and

chemical compositions (see Fig. 2), including liposo-

mal and polymersomal EMV analogues (Akbarzadeh

et al. 2013; Christian et al. 2009; Lee and Feijen 2012;

Theresa and Pieter 2013), micelles (Deng et al. 2012;

Xu et al. 2013), polymer, protein and lipid complexes

(Zia ur et al. 2013; Wasungu and Hoekstra 2006; Ge

et al. 2012; Zhang et al. 2012), dendrimers (Deng et al.

2012; Zhu and Shi 2013), and nucleic acid-based

nanoparticles and nanostructures (Shu et al. 2014; Roh

et al. 2011). Beyond these biomimetic and bioinspired

delivery platforms, there has been also considerable

interest in the use of surface-functionalised inorganic

nanoparticles, nanocrystals, nanotubes and quantum

dots for nanomedicinal applications. Such agents are

thoroughly reviewed elsewhere (Sekhon and Kamboj

2010a; Malmsten 2013; Rajendra and Hae-Won 2013;

Son et al. 2007a, b; Sekhon and Kamboj 2010b) but are

beyond the scope of this review. Below we describe

some of the synthetic nanoscale drug-delivery systems

most reminiscent of biological EMVs, and provide

examples of their application in the treatment of age-

related disease.

The nanovehicles most resembling natural micro-

vesicles are liposomes and polymersomes. Both are

synthetic vesicles of adjustable size (typically tens to

hundreds of nanometres in diameter), usually enclos-

ing and protecting an aqueous compartment, however

the membrane of the former consists of a lipid bilayer

(typically comprised of phospholipids) while the latter

is self-assembled from amphiphilic block copolymers

(Chandrawati and Caruso 2012; LoPresti et al. 2009;

Allen and Cullis 2013). Hydrophilic cargoes are

enclosed within the aqueous compartment, whereas

hydrophobic species can be sequestered within the

membrane; the vesicles, like all drug delivery vehi-

cles, serve as vectors by which to enhance drug

pharmacokinetics, uptake, stability or solubility, or as

a means to mask the (off-target) toxicity of the cargo.

Both classes of vesicle are tailorable in composition,

however liposomes generally benefit from a high

biocompatibility and a soft and fluid bilayer, which

can facilitate direct interaction with cell membranes,

whereas polymersomes typically possess a greater

mechanical and chemical stability making them
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potentially more robust in regards to functionalization.

While some liposomes can enter cells via direct

membrane fusion (dependent on liposome membrane

composition) (Lee et al. 2005), many liposomes and

most polymersomes are proposed to enter cells via an

endocytic pathway; passively targeted vesicles are

believed to be taken up through pinocytosis (or

phagocytosis) whereas those actively targeted towards

a specific cellular surface marker benefit from recep-

tor-mediated endocytosis (Allen and Cullis 2013;

Templeton 2002; Christian et al. 2009).

Early liposomes applications involved the use of

neutrally-charged vesicles for the delivery of proteins

and drugs (Gregoriadis and Ryman 1971), and later

genes (Tai-Kin et al. 1980). More recently, cationic

PEGylated (that is, coated in bio-inert poly(ethylene-

glycol)) liposomes have been employed as the du jour

standard for greater transfection ability and biocom-

patibility (Collet et al. 2013; Boado 2007), and

liposomal cargoes have expanded to include RNAi

agents (Spagnou et al. 2004; Kanasty et al. 2013;

Buyens et al. 2012). Complexes of cationic lipids and

polyanionic nucleic acids are sometimes referred to as

lipoplexes (Wasungu and Hoekstra 2006; Zhang et al.

2012). Over the years, there has been considerable

research into further optimising the pharmacokinetics

of liposomes and improving the encapsulation extent,

release rate, and intracellular delivery of liposome-

delivered therapeutics (Allen and Cullis 2013).

Through appropriate modification and functionaliza-

tion of the lipidic membrane, liposomes can be

engineered to release their contents under appropriate

trigger conditions, such as a specific pH range,

elevated temperatures, irradiation, sonication, or

enzymatic degradation (Allen and Cullis 2013). Fur-

thermore, there have been extensive efforts to develop

actively targeted liposomes through the attachment of

cell-specific ligands, or their incorporation into the

lipid formulation, with the intent of enhancing drug

delivery to the tissue of interest. This is typically

approached by using monoclonal antibodies (mAbs) to

direct so-called immunoliposomes against surface

receptors on the cells of interest (Noble et al. 2014),

however enzymes (Blume et al. 1993), small mole-

cules (Lee and Low 1994), and nucleic acid aptamers

(Cao et al. 2009) have also been employed. Never-

theless, the efficacy of targeted liposomes has to date

generally not been considered sufficiently improved

over passively-targeted liposomes to warrant the extra

preparative work and cost (Allen and Cullis 2013).

Liposome-drug formulations have been approved

for clinical applications, especially the delivery of

anti-cancer chemotherapeutics via a variety of admin-

istrative routes, or are presently in clinical trials (Allen

Fig. 2 Types of synthetic EV analogue nanovehicles. Lipo-

somes (a) are membrane bilayers enclosing an aqueous/

hydrophilic interior. Polymersomes (b) are comprised of

amphiphilic block copolymers that self-assemble into a sphere

with a hydrophobic layer sandwiched between a hydrophilic

core and surface. Micelles (c) also consist of amphiphilic block

copolymers, but assembled into a sphere with a hydrophobic

core and hydrophilic exterior. Polyplexes (d), like their lipid or

protein-based analogues, complex polyanionic nucleic acids via

electrostatic interactions with cationic polymers. Dendrimers

(e) are unimolecular, branched spherical assemblies with dense,

hydrophobic surfaces but relatively empty pockets nearer the

core in which to encapsulate drugs. (Color figure online)

Biogerontology

123



and Cullis 2013). Indeed, PEGylated, doxorubicin-

loaded liposomes—Doxil—became the first nano-

medicine to be approved by the FDA in 1995 (Gabizon

et al. 1994; Barenholz 2012). Of specific relevance to

age-related diseases, liposome-delivered doxorubicin

has also been approved for use in treating early and

metastatic breast cancers (Lao et al. 2013), with

HER2-targeted (Hendriks et al. 2013) and hyperther-

mia-triggered (Staruch et al. 2011) liposomes under-

going clinical testing as delivery vectors. Anti-tumour

applications are not restricted to the delivery of

doxorubicin: for instance, liposomes have been used

to deliver paclitaxel to breast cancers (Fasol et al.

2012), cisplatin and anti-MUC vaccines in non-small

cell lung cancers (Fantini et al. 2011; Bradbury and

Shepherd 2008), irinotecan (CPT-11) to colon and

breast cancers (Drummond et al. 2006), and combi-

natorial treatments (irinotecan and floxuridine) in

colorectal cancers (Batist et al. 2008). Overexpression

of miR-7 in tumour models through the liposomal

delivery of a miR-7 plasmid was found to lead to the

suppression of EGFR tyrosine kinase inhibitor-resis-

tance in lung cancer cells (Rai et al. 2011), while

immunoliposomes targeted towards human insulin

receptor and mouse transferrin receptor (TfR) deliv-

ered an anti-EGFR shRNA plasmid, knocking down

EGFR expression and increasing survival in murine

glioma models (Zhang et al. 2004). Liposome-based

treatments for cardiovascular disease are also under-

going clinical trials, with the vesicles being employed

as vehicles to deliver RNAi-based therapeutics, such

as anti-proprotein convertase subtilisin/kexin type 9

(PCSK9) siRNA for tackling hypercholesterolemia

(Jayaraman et al. 2012).

To date, liposomes have received relatively little

attention as therapeutic delivery agents for the treat-

ment of neurodegenerative disease. Some success has

been achieved with directing liposomes across the

BBB using receptor-mediated transcytosis and appro-

priate mAbs (e.g. the insulin and TfR antibodies

mentioned above) (Boado 2007). Therapeutic out-

comes were achieved in rats with experimental PD by

delivering TfR-targeted liposomes across the BBB and

into neurons, delivering a glial-derived neurotrophic

factor (GDNF) plasmid. Expression of the GDNF was

restricted to catecholaminergic neurons by means of a

region-specific tyrosine hydroxylase promoter, with

dosed GDNF expression having trophic effects in

dopaminergic neurons (Xia et al. 2008). Most

applications of liposomes in the treatment of PD are

symptomatic, with efforts devoted to developing

optimal pharmacokinetics of L-DOPA and analogues

(Spuch and Navarro 2011; Di Stefano et al. 2006). A

number of liposomes have been developed as putative

AD therapeutics, with a common approach being the

use of the vesicle to target (via specific membrane

lipids, antibodies or curcumin) and sequester poten-

tially toxic extracellular Ab (Bereczki et al. 2011;

Canovi et al. 2011; Gobbi et al. 2010; Taylor et al.

2011; Mourtas et al. 2011). Intranasal delivery of

liposomal formulations of rivastigmine, an acetyl

cholinesterase inhibitor used in AD treatment, have

been found to exhibit a longer in vivo half-life and

effect higher drug concentrations in the brain than the

free drug (Mutlu et al. 2011; Arumugam et al. 2008).

Furthermore, liposomes have been employed as vac-

cination vectors against protein misfolding diseases

such as AD, by delivering short peptides mimicking

pathological epitopes of Ab or Tau with the intent of

eliciting a robust and specific antibody response

against the toxic form of the peptide and a subsequent

clinical improvement in disease models (Hickman

et al. 2011; Muhs et al. 2007; Nicolau et al. 2002;

Theunis et al. 2013).

Polymersomes differ from liposomes in the nature of

their membrane composition, with the coblock poly-

mers of polymersomes yielding a thicker, more robust

membrane (Christian et al. 2009). Accordingly, the

membranes of polymersomes are generally considered

to be more amenable to modification and functional-

ization, with many more examples of vesicles with

triggered-release mechanisms. This commonly takes

the form of a membrane, which degrades in the acidic

environment of the endosome, ensuring that large

quantities of the polymersome’s therapeutic cargo are

delivered into the cytosol (LoPresti et al. 2009). Other

vesicles are engineered to release their payload under

external stimuli such as UV irradiation, elevated

temperature, or appropriate redox conditions (Rijcken

et al. 2007; Lee and Feijen 2012). Polymersomes are

commonly PEGylated to enhance pharmacokinetics

and circulation half-lives, as per their liposomal

counterparts, and active targeting is accomplished

through the incorporation of antibodies, peptides and

small molecule ligands into the external membrane

(Christian et al. 2009; Lee and Feijen 2012). One novel

example of active targeting involves the incorporation

of polyguanylic acid, thus targeting the polymersomes
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to the macrophage scavenger receptor A1, upregulated

in activated tissue macrophages (Broz et al. 2005). Also

like liposomes, polymersomes have been most exten-

sively investigated as a means to deliver anti-cancer

chemotherapeutics; doxorubicin is once again the

archetypical cargo (Waterhouse et al. 2001), however

the thick hydrophobic membranes of polymersomes

facilitates co-delivery of a more lipophilic drug such as

paclitaxel as well (Ahmed et al. 2006). Other putative

payloads include genes, RNAi agents, and proteins/

enzymes that, with the optimal polymersome compo-

sition, remarkably maintain their structure and activity

when incorporated into the vesicle membrane or when

encapsulated within (Christian et al. 2009). The rela-

tively recent development of polymersomes means that

few thoroughly proven examples of their therapeutic

utility are available. Nevertheless, they show promise

in preliminary applications, including systems of

relevance to age-related disease. Polymersomes func-

tionalised with the PR_b peptide, a fibronectin mimetic

targeting a5b1 integrin, were developed to deliver

siRNA down regulating the Orai3 calcium channel

protein in breast cancer cells, inducing cell death

(Pangburn et al. 2012). Likewise, incorporation of

hyaluronic acid into the external membrane of poly-

mersomes has been found to enhance their delivery to

CD44-overexpressing breast cancer cells (Upadhyay

et al. 2010), with potential applications in other CD44-

overexpressing cancers such as glioma (Knupfer et al.

1999). Transferrin and lactoferrin have also been

employed in targeting doxorubicin-laden polymer-

somes towards glioma, in vitro and in vivo (Pang

et al. 2011; Pang et al. 2010). Lactoferrin-bearing

polymersomes were also found to cross the BBB to

deliver the neuroprotective peptide S14G-humanin to

the neurons of Ab-treated rats, with a protective effect

(Yu et al. 2012). Similarly, polymersomes modified

with the TfR antibody OX26 and loaded with NC-1900,

a vasopressin fragment analogue known to improve

spatial memory impairment, crossed the BBB and

accumulated in the brain of scopolamine-lesioned rats,

which subsequently performed better in the Morris

water maze test (Pang et al. 2008). Studies with

neurotensin-modified polyplexes have demonstrated

that neurotrophic genes such as GDNF can be delivered

with high specificity to neurotensin receptor 1-express-

ing dopaminergic neurons, a potential therapeutic

avenue in PD (Martinez-Fong et al. 2012). More

generally, polymersomes functionalised with imaging

moieties are also being investigated in the role of

diagnostic probes, through the delivery of fluorophores

or magnetic resonance imaging (MRI) contrast agents

(LoPresti et al. 2009; Levine et al. 2008; Pourtau et al.

2013; Chiang et al. 2013).

Micelles, monolayered spherical arrangements of

lipids or (more typically in therapeutic applications)

amphiphilic block copolymers, typically with a hydro-

phobic core, have seen therapeutic applications in the

delivery of poorly water-soluble drugs (Xu et al.

2013). For instance, PEGylated polylactide-based

micelles loaded with the hydrophobic drug paclitaxel

(Kim et al. 2004) are approved for clinical use in the

treatment of breast, lung, and ovarian cancers in South

Korea (and undergoing Phase III trials elsewhere) as

Genexol-PM. Many other micelle formulations, incor-

porating a diversity of different chemotherapeutics,

are undergoing clinical trials for treating a variety of

cancers (Deng et al. 2012). Combinatorial approaches

are also being investigated; for instance, micelles

loaded with a combined payload of doxorubicin and

lapatinib yielded an enhanced doxorubicin uptake in

drug-resistant breast cancer cells in vitro, and reduced

tumor growth relative to doxorubicin monotherapy

in vivo (Wang et al. 2014a). Micelles (polyplexes)

have also been employed as nucleic acid delivery

agents, typically through incorporation of cationic

polymers by which to complex the polyanionic

biopolymers (Liu et al. 2013) (Jeong et al. 2011).

MRI-active micelles have been used to deliver plas-

mid DNA into the brain via a compromised BBB after

intranasal delivery in mice with traumatic brain injury

(Das et al. 2014), while micelles functionalised with

the Tat cell-penetrating peptide were able to deliver

siRNA to the (intact) brain via the same administration

route (Kanazawa et al. 2013). As with the vesicular

drug delivery platforms can be engineered with

stimulus-responsive drug-release mechanisms (Ganta

et al. 2008; Liu et al. 2013), and can be actively

targeted by appending and appropriate targeting

moiety (e.g. an antibody) to the external polymers

(Sawant et al. 2012). BBB-crossing micelles have

been developed by targeting nicotine acetylcholine

receptors on the capillary endothelium of the brain

using the peptide CDX (derived from snake neuro-

toxin candoxin). These vehicles efficiently delivered

paclitaxel into the brain and inhibited intracranial

glioblastoma growth in mouse models. Co-delivery of

the tumour necrosis-factor related apoptosis-inducing
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ligand gene enhances the anti-glioblastoma effect even

further (Zhan et al. 2012). Haney et al. report on a novel

alternative to targeting moieties wherein they macro-

phages to deliver nanozymes (micelles incorporating

the redox enzyme catalase) across an artificial BBB and

into microvesicle endothelial cells, neurons, and astro-

cytes. The antioxidant properties of the nanozymes

resulted in efficient reactive oxygen species decompo-

sition, implying potentially useful therapeutic applica-

tions in diseases with a neuroinflammatory component,

such as AD or PD (Haney et al. 2011).

Various dendritic and polymeric nanoparticle prep-

arations have also been used to deliver chemothera-

peutics, nucleic acids, and proteins. Dendrimers are

unimolecular, highly branched spherical macromole-

cules that mimic micelles in their external topology,

but also with a liposome-like interior voids (Ganta

et al. 2008; Esfand and Tomalia 2001; El Kazzouli

et al. 2012). The hydrophilic exterior can be exten-

sively functionalised for enhanced bioavailability and

targeting (Kesharwani et al. 2014; Zhu and Shi 2013),

a property extensively exploited for tumour-specific

delivery of chemotherapeutics (Agarwal et al. 2008).

They are also potent siRNA and gene-delivery vectors

(Wu et al. 2013). Sialic acid-functionalised dendri-

mers have been found to mimic cell surface sialic acid

clusters, mitigating Ab-induced neurotoxicity (Patel

et al. 2007). Tang et al. describe a dendrimer

comprised of multiple hydrolysable L-DOPA units,

enhanced in stability and solubility relative to free L-

DOPA while facilitating slow release (Tang et al.

2006). This represents a potentially useful prodrug for

the treatment of dopamine deficits seen in PD.

Dendrimers have also been investigated as potential

agents by which to directly destabilise the neurotoxic

protein aggregates associated with neurodegenerative

disease (Heegaard et al. 2007).

Biodegradable polymeric nanoparticles, commonly

based on poly(lactic-co-glycolic acid) (PLGA), have

been used to deliver anti-cancer drugs, proteins, genes

and RNAi (Danhier et al. 2012). They have also

shown promise in treating neurodegenerative disorders

(Gao et al. 2013). For instance, PLGA nanoparticles

functionalised with the BBB-penetrating peptide TGN

delivered the neuroprotective peptide NAP

into the brains of mice with model AD, eliciting

improved spatial learning and acetylcholinesterase/

cholinacetyltransferase activity (Li et al. 2013b). Wheat

germ agglutinin-functionalised PLGA nanoparticles

enhanced the brain delivery of encapsulated vasoactive

intestinal peptide relative to unfunctionalised nanopar-

ticles, and this was again reflected in improved spatial

memory and acetylcholinesterase activity in dementia

mice (Gao et al. 2007). Lactoferrin-modified polymeric

nanoparticles have been used to enhance the delivery of

the cytoprotectant urocortin across the BBB of PD-

model rats when administered intravenously (Hu et al.

2009; Hu et al. 2011). Odorranalectin has been

employed in intranasal administrations for a similar

increase in brain-delivery efficiency of urocortin-

loaded nanoparticles, alleviating the loss of dopami-

nergic cells in PD-model rats (Wen et al. 2011).

In recent years, nanostructures that are constructed

from nucleic acids have become an increasingly

popular prospective therapeutic platform. Such con-

structs benefit from the fact that both the therapeutic

and targeting moieties – siRNA and aptamers, for

instance – can be constructed from the same material

as the platform without requiring additional synthetic

and conjugation steps. RNA nanotechnology(Guo

2010) has demonstrated considerable potential, with

one recent approach involving packaging RNA

(pRNA) nanostructures, discrete and stable stem-loop

structures derived from the DNA-packaging motor of

the phi29 bacteriophage (Shu et al. 2014). The pRNA

molecule is readily modified to include therapeutic,

diagnostic, and targeting moieties, and can be engi-

neered at the supramolecular level to generate multi-

meric species via loop–loop interactions (Shu et al.

2013a) or multi-armed junctions (Haque et al. 2012;

Shu et al. 2011). Each of the helical arms of these

structures can be designed to function as siRNAs,

miRNAs, aptamers, or ribozymes, or can be function-

alised to append small molecule drugs or ligands,

fluorophores, peptides, or additional nanostructures or

nanoparticles (Shu et al. 2013b). The crux of the

pRNA nanostructure demonstrates remarkable chem-

ical and thermodynamic stability, low immunogenic-

ity and toxicity, and excellent in vivo halflife and

biodistribution properties. pRNA nanotechnology has

shown considerable promise in laboratory studies,

largely in tumour-specific delivery of siRNA. For

instance, systemically-delivered folate-functionalised

pRNA three-way junctions have been shown to

accumulate in folate receptor-overexpressing tumour

xenografts in mice (Shu et al. 2011). Similarly, DNA-

based self-assembled architectures have also proven

highly functionalizable and effective platforms for the
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delivery of diagnostics and therapeutics (drugs and

siRNA/antisense oligonucleotides) in vitro and in vivo

(Bhatia et al. 2011; Keum et al. 2011; Walsh et al.

2011; Roh et al. 2011; Lee et al. 2012a; Zhu et al.

2013).

On a larger scale, RNAi microsponges are polymers

of repeating hairpin RNAs that self-assemble into

pleated sheets, which themselves arrange into a spher-

ical formation. The approximately half-million RNA

hairpins are cleavable into siRNA moieties by the

RNAi machinery after cellular uptake (with the aid of a

polycationic escort), making for potentially potent gene

silencing (Lee et al. 2012b). Spherical nucleic acids

(SNAs) are densely packed, highly oriented oligonu-

cleotides covalently attached to an inorganic (usually

gold) nanoparticle core. They are highly stable and

nuclease resistant, capable of autonomous transfection,

and capable of strong and persistent gene silencing with

minimal immune response or off-target effects (Choi

et al. 2013; Cutler et al. 2012). SNAs bearing siRNA

targeting the oncoprotein Bcl2Like12, overexpressed in

glioblastoma multiforme (GBM), effectively knocked

down Bcl2L12 mRNA and protein in GBM cells and,

when systemically administered to GBM xenografted

mice, increased intratumoral apoptosis and decreased

tumor burden (Jensen et al. 2013). As described earlier,

SNAs have been delivered via natural exosomes.

Exosomal inclusion of SNAs appears to greatly

enhance their functional effect: SNAs comprised of

anti-miR-21 oligonucleotides were endocytosed into

PC-3 prostate cancer cells and subsequently naturally

sorted into exosomes. The secreted exosomes, when re-

introduced into the same cell type, knocked down the

miR-21 oncomiR with an efficacy vastly greater than

free SNAs (Alhasan et al. 2014).

While RNA-based therapeutics, particularly those

acting via the RNAi pathway, possess great potential,

specific and efficient cell delivery to target cells

represents a major hurdle to widespread clinical

applications. These obstacles are particularly large in

the CNS, where the blood–brain and blood–spinal cord

barriers obstruct the efficacious uptake of many con-

ventional therapeutics. Encouraging results are being

obtained using cell-specific and/or BBB-crossing func-

tionalities, be they nucleic acid aptamers, cell-penetrat-

ing peptides, or small molecule receptor-binding

ligands, however EVs may be a particularly convenient

means to deliver RNA-based therapeutics to their site of

action. As described previously, EVs often possess an

inherent recipient cell specificity when trafficked

in vivo which can be exploited or enhanced for the

delivery of therapeutics. Moreover, as delivery vehicles

they possess very low immunogenicity, particularly if

derived from autologous cells. These aspects are well-

illustrated by the DC-derived EV-mediated delivery of

siRNA across the BBB and into neural cells, detailed

earlier in this review. When administered systemically,

these EVs, further functionalised with a brain-penetrat-

ing RVG peptide, demonstrated selective and effective

delivery of siRNA into the brain (Alvarez-Erviti et al.

2011c). Presently, the in vitro and in vivo delivery of

RNAi agents (or other nucleic acids) commonly relies

upon generic liposome preparations, the transfection

efficacy and toxicity of which varies largely between

recipient cell types. It is envisioned that EVs might

serve as a means to greatly enhance the efficacy and

safety of such transfections, particularly with advances

in the ease of EV isolation, purification and character-

isation. Thus, EVs represent a potential high-specific-

ity, low-immunogenicity option for the targeted

delivery of multifunctional RNA therapeutics.

Conclusions

Our emergent understanding of the diverse and

significant roles played by EVs hints at a powerful

new therapeutic avenue to exploit in the treatment of

disease, including those typically associated with the

aging process. This is perhaps most evident in age-

related neurodegenerative disorders as EVs tantalise

researchers with properties conducive to surmounting

the barriers plaguing the generally undruggable

ailments of the brain. While advances in bioengineer-

ing lead us towards the ability to modulate and adapt

naturally occurring EVs, directing their packaging

with therapeutic molecules and directing them

towards specific recipient cells, concurrent advances

in nanoengineering furthers our ability to emulate

these properties in synthetic drug-delivery vectors.

Nevertheless, an efficacious exploitation of the EV

system will require greater understanding of the

intricate in vivo intercellular communication network

that extends well beyond the unidirectional processes

studied in most in vitro systems. This is of particular

significance in multi-factorial, complex conditions

such as cellular senescence and organismal aging,

especially in immune-specialised environments such
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as the CNS. Moreover, elucidation of the natural

processes of biogenesis, packaging and trafficking will

serve to strengthen our efforts at effecting targeted

therapy via synthetic routes. Thus, while studies into

the nature of EVs are still in their infancy, the

significance of these agents of extracellular commu-

nication in matters physiological and pathological is

abundantly clear.
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